Spaces:
Running
on
Zero
Running
on
Zero
1024 support
Browse files- app.py +65 -31
- src/generate.py +10 -2
app.py
CHANGED
@@ -8,11 +8,7 @@ import numpy as np
|
|
8 |
|
9 |
from src.generate import seed_everything, generate
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
# def init_pipeline():
|
15 |
-
# global pipe
|
16 |
pipe = FluxPipeline.from_pretrained(
|
17 |
"black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16
|
18 |
)
|
@@ -20,12 +16,17 @@ pipe = pipe.to("cuda")
|
|
20 |
pipe.load_lora_weights(
|
21 |
"Yuanshi/OminiControl",
|
22 |
weight_name=f"omini/subject_512.safetensors",
|
23 |
-
adapter_name="
|
|
|
|
|
|
|
|
|
|
|
24 |
)
|
25 |
|
|
|
26 |
@spaces.GPU
|
27 |
-
def process_image_and_text(image, text):
|
28 |
-
# center crop image
|
29 |
w, h, min_size = image.size[0], image.size[1], min(image.size)
|
30 |
image = image.crop(
|
31 |
(
|
@@ -39,16 +40,13 @@ def process_image_and_text(image, text):
|
|
39 |
|
40 |
condition = Condition("subject", image)
|
41 |
|
42 |
-
# if pipe is None:
|
43 |
-
# init_pipeline()
|
44 |
-
|
45 |
result_img = generate(
|
46 |
pipe,
|
47 |
prompt=text.strip(),
|
48 |
conditions=[condition],
|
49 |
num_inference_steps=8,
|
50 |
-
height=
|
51 |
-
width=
|
52 |
).images[0]
|
53 |
|
54 |
return result_img
|
@@ -58,38 +56,74 @@ def get_samples():
|
|
58 |
sample_list = [
|
59 |
{
|
60 |
"image": "assets/oranges.jpg",
|
|
|
61 |
"text": "A very close up view of this item. It is placed on a wooden table. The background is a dark room, the TV is on, and the screen is showing a cooking show. With text on the screen that reads 'Omini Control!'",
|
62 |
},
|
63 |
{
|
64 |
"image": "assets/penguin.jpg",
|
|
|
65 |
"text": "On Christmas evening, on a crowded sidewalk, this item sits on the road, covered in snow and wearing a Christmas hat, holding a sign that reads 'Omini Control!'",
|
66 |
},
|
67 |
{
|
68 |
"image": "assets/rc_car.jpg",
|
|
|
69 |
"text": "A film style shot. On the moon, this item drives across the moon surface. The background is that Earth looms large in the foreground.",
|
70 |
},
|
71 |
{
|
72 |
"image": "assets/clock.jpg",
|
|
|
73 |
"text": "In a Bauhaus style room, this item is placed on a shiny glass table, with a vase of flowers next to it. In the afternoon sun, the shadows of the blinds are cast on the wall.",
|
74 |
},
|
75 |
]
|
76 |
-
return [
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
if __name__ == "__main__":
|
91 |
-
|
92 |
-
demo.launch(
|
93 |
-
debug=True,
|
94 |
-
ssr_mode=False
|
95 |
-
)
|
|
|
8 |
|
9 |
from src.generate import seed_everything, generate
|
10 |
|
11 |
+
pipe = None
|
|
|
|
|
|
|
|
|
12 |
pipe = FluxPipeline.from_pretrained(
|
13 |
"black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16
|
14 |
)
|
|
|
16 |
pipe.load_lora_weights(
|
17 |
"Yuanshi/OminiControl",
|
18 |
weight_name=f"omini/subject_512.safetensors",
|
19 |
+
adapter_name="subject_512",
|
20 |
+
)
|
21 |
+
pipe.load_lora_weights(
|
22 |
+
"Yuanshi/OminiControl",
|
23 |
+
weight_name=f"omini/subject_1024_beta.safetensors",
|
24 |
+
adapter_name="subject_1024",
|
25 |
)
|
26 |
|
27 |
+
|
28 |
@spaces.GPU
|
29 |
+
def process_image_and_text(image, resolution, text):
|
|
|
30 |
w, h, min_size = image.size[0], image.size[1], min(image.size)
|
31 |
image = image.crop(
|
32 |
(
|
|
|
40 |
|
41 |
condition = Condition("subject", image)
|
42 |
|
|
|
|
|
|
|
43 |
result_img = generate(
|
44 |
pipe,
|
45 |
prompt=text.strip(),
|
46 |
conditions=[condition],
|
47 |
num_inference_steps=8,
|
48 |
+
height=resolution,
|
49 |
+
width=resolution,
|
50 |
).images[0]
|
51 |
|
52 |
return result_img
|
|
|
56 |
sample_list = [
|
57 |
{
|
58 |
"image": "assets/oranges.jpg",
|
59 |
+
"resolution": 512,
|
60 |
"text": "A very close up view of this item. It is placed on a wooden table. The background is a dark room, the TV is on, and the screen is showing a cooking show. With text on the screen that reads 'Omini Control!'",
|
61 |
},
|
62 |
{
|
63 |
"image": "assets/penguin.jpg",
|
64 |
+
"resolution": 512,
|
65 |
"text": "On Christmas evening, on a crowded sidewalk, this item sits on the road, covered in snow and wearing a Christmas hat, holding a sign that reads 'Omini Control!'",
|
66 |
},
|
67 |
{
|
68 |
"image": "assets/rc_car.jpg",
|
69 |
+
"resolution": 1024,
|
70 |
"text": "A film style shot. On the moon, this item drives across the moon surface. The background is that Earth looms large in the foreground.",
|
71 |
},
|
72 |
{
|
73 |
"image": "assets/clock.jpg",
|
74 |
+
"resolution": 1024,
|
75 |
"text": "In a Bauhaus style room, this item is placed on a shiny glass table, with a vase of flowers next to it. In the afternoon sun, the shadows of the blinds are cast on the wall.",
|
76 |
},
|
77 |
]
|
78 |
+
return [
|
79 |
+
[
|
80 |
+
Image.open(sample["image"]).resize((512, 512)),
|
81 |
+
sample["resolution"],
|
82 |
+
sample["text"],
|
83 |
+
]
|
84 |
+
for sample in sample_list
|
85 |
+
]
|
86 |
+
|
87 |
+
|
88 |
+
header = """
|
89 |
+
# π OminiControl / FLUX
|
90 |
+
|
91 |
+
<div style="text-align: center; display: flex; justify-content: left; gap: 5px;">
|
92 |
+
<a href="https://arxiv.org/abs/2411.15098"><img src="https://img.shields.io/badge/ariXv-Paper-A42C25.svg" alt="arXiv"></a>
|
93 |
+
<a href="https://huggingface.co/Yuanshi/OminiControl"><img src="https://img.shields.io/badge/π€-Model-ffbd45.svg" alt="HuggingFace"></a>
|
94 |
+
<a href="https://github.com/Yuanshi9815/OminiControl"><img src="https://img.shields.io/badge/GitHub-Code-blue.svg?logo=github&" alt="GitHub"></a>
|
95 |
+
</div>
|
96 |
+
"""
|
97 |
+
|
98 |
+
|
99 |
+
def create_app():
|
100 |
+
with gr.Blocks() as app:
|
101 |
+
gr.Markdown(header)
|
102 |
+
with gr.Tabs():
|
103 |
+
with gr.Tab("Subject-driven"):
|
104 |
+
gr.Interface(
|
105 |
+
fn=process_image_and_text,
|
106 |
+
inputs=[
|
107 |
+
gr.Image(type="pil", label="Condition Image", width=300),
|
108 |
+
gr.Radio(
|
109 |
+
[("512", 512), ("1024(beta)", 1024)],
|
110 |
+
label="Resolution",
|
111 |
+
value=512,
|
112 |
+
),
|
113 |
+
# gr.Slider(4, 16, 4, step=4, label="Inference Steps"),
|
114 |
+
gr.Textbox(lines=2, label="Text Prompt"),
|
115 |
+
],
|
116 |
+
outputs=gr.Image(type="pil"),
|
117 |
+
examples=get_samples(),
|
118 |
+
)
|
119 |
+
with gr.Tab("Fill"):
|
120 |
+
gr.Markdown("Coming soon")
|
121 |
+
with gr.Tab("Canny"):
|
122 |
+
gr.Markdown("Coming soon")
|
123 |
+
with gr.Tab("Depth"):
|
124 |
+
gr.Markdown("Coming soon")
|
125 |
+
return app
|
126 |
+
|
127 |
|
128 |
if __name__ == "__main__":
|
129 |
+
create_app().launch(debug=True, ssr_mode=False)
|
|
|
|
|
|
|
|
src/generate.py
CHANGED
@@ -166,7 +166,12 @@ def generate(
|
|
166 |
use_condition = conditions is not None or []
|
167 |
if use_condition:
|
168 |
assert len(conditions) <= 1, "Only one condition is supported for now."
|
169 |
-
pipeline.set_adapters(
|
|
|
|
|
|
|
|
|
|
|
170 |
for condition in conditions:
|
171 |
tokens, ids, type_id = condition.encode(self)
|
172 |
condition_latents.append(tokens) # [batch_size, token_n, token_dim]
|
@@ -175,7 +180,10 @@ def generate(
|
|
175 |
condition_latents = torch.cat(condition_latents, dim=1)
|
176 |
condition_ids = torch.cat(condition_ids, dim=0)
|
177 |
if condition.condition_type == "subject":
|
178 |
-
|
|
|
|
|
|
|
179 |
condition_type_ids = torch.cat(condition_type_ids, dim=0)
|
180 |
|
181 |
# 5. Prepare timesteps
|
|
|
166 |
use_condition = conditions is not None or []
|
167 |
if use_condition:
|
168 |
assert len(conditions) <= 1, "Only one condition is supported for now."
|
169 |
+
pipeline.set_adapters(
|
170 |
+
{
|
171 |
+
512: "subject_512",
|
172 |
+
1024: "subject_1024",
|
173 |
+
}[height]
|
174 |
+
)
|
175 |
for condition in conditions:
|
176 |
tokens, ids, type_id = condition.encode(self)
|
177 |
condition_latents.append(tokens) # [batch_size, token_n, token_dim]
|
|
|
180 |
condition_latents = torch.cat(condition_latents, dim=1)
|
181 |
condition_ids = torch.cat(condition_ids, dim=0)
|
182 |
if condition.condition_type == "subject":
|
183 |
+
delta = 32 if height == 512 else -32
|
184 |
+
# print(f"Condition delta: {delta}")
|
185 |
+
condition_ids[:, 2] += delta
|
186 |
+
|
187 |
condition_type_ids = torch.cat(condition_type_ids, dim=0)
|
188 |
|
189 |
# 5. Prepare timesteps
|