Spaces:
Running
on
Zero
Running
on
Zero
add all
Browse files- README.md +127 -12
- assets/book.jpg +3 -0
- assets/clock.jpg +3 -0
- assets/demo/book_omini.jpg +3 -0
- assets/demo/clock_omini.jpg +3 -0
- assets/demo/demo_this_is_omini_control.jpg +3 -0
- assets/demo/dreambooth_res.jpg +3 -0
- assets/demo/monalisa_omini.jpg +3 -0
- assets/demo/oranges_omini.jpg +3 -0
- assets/demo/penguin_omini.jpg +3 -0
- assets/demo/rc_car_omini.jpg +3 -0
- assets/demo/room_corner_canny.jpg +3 -0
- assets/demo/room_corner_coloring.jpg +3 -0
- assets/demo/room_corner_deblurring.jpg +3 -0
- assets/demo/room_corner_depth.jpg +3 -0
- assets/demo/scene_variation.jpg +3 -0
- assets/demo/shirt_omini.jpg +3 -0
- assets/demo/try_on.jpg +3 -0
- assets/monalisa.jpg +3 -0
- assets/oranges.jpg +3 -0
- assets/penguin.jpg +3 -0
- assets/rc_car.jpg +3 -0
- assets/room_corner.jpg +3 -0
- assets/tshirt.jpg +3 -0
- examples/inpainting.ipynb +143 -0
- examples/spatial.ipynb +184 -0
- examples/subject.ipynb +214 -0
- requirements.txt +6 -0
- src/block.py +333 -0
- src/condition.py +124 -0
- src/generate.py +286 -0
- src/lora_controller.py +75 -0
- src/transformer.py +270 -0
README.md
CHANGED
@@ -1,12 +1,127 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# OminiControl
|
2 |
+
|
3 |
+
|
4 |
+
<img src='./assets/demo/demo_this_is_omini_control.jpg' width='100%' />
|
5 |
+
<br>
|
6 |
+
|
7 |
+
<a href="https://arxiv.org/abs/2411.15098"><img src="https://img.shields.io/badge/ariXv-2411.15098-A42C25.svg" alt="arXiv"></a>
|
8 |
+
<a href="https://huggingface.co/Yuanshi/OminiControl"><img src="https://img.shields.io/badge/π€_HuggingFace-Model-ffbd45.svg" alt="HuggingFace"></a>
|
9 |
+
<a href="https://github.com/Yuanshi9815/Subjects200K"><img src="https://img.shields.io/badge/GitHub-Subjects200K dataset-blue.svg?logo=github&" alt="GitHub"></a>
|
10 |
+
|
11 |
+
> **OminiControl: Minimal and Universal Control for Diffuison Transformer**
|
12 |
+
> <br>
|
13 |
+
> Zhenxiong Tan,
|
14 |
+
> [Songhua Liu](http://121.37.94.87/),
|
15 |
+
> [Xingyi Yang](https://adamdad.github.io/),
|
16 |
+
> Qiaochu Xue,
|
17 |
+
> and
|
18 |
+
> [Xinchao Wang](https://sites.google.com/site/sitexinchaowang/)
|
19 |
+
> <br>
|
20 |
+
> [Learning and Vision Lab](http://lv-nus.org/), National University of Singapore
|
21 |
+
> <br>
|
22 |
+
|
23 |
+
|
24 |
+
## Features
|
25 |
+
|
26 |
+
OmniControl is a minimal yet powerful universal control framework for Diffusion Transformer models like [FLUX](https://github.com/black-forest-labs/flux).
|
27 |
+
|
28 |
+
* **Universal Control π**: A unified control framework that supports both subject-driven control and spatial control (such as edge-guided and in-painting generation).
|
29 |
+
|
30 |
+
* **Minimal Design π**: Injects control signals while preserving original model structure. Only introduces 0.1% additional parameters to the base model.
|
31 |
+
|
32 |
+
## Quick Start
|
33 |
+
### Setup (Optional)
|
34 |
+
1. **Environment setup**
|
35 |
+
```bash
|
36 |
+
conda create -n omini python=3.10
|
37 |
+
conda activate omini
|
38 |
+
```
|
39 |
+
2. **Requirements installation**
|
40 |
+
```bash
|
41 |
+
pip install -r requirements.txt
|
42 |
+
```
|
43 |
+
### Usage example
|
44 |
+
1. Subject-driven generation: `examples/subject.ipynb`
|
45 |
+
2. In-painting: `examples/inpainting.ipynb`
|
46 |
+
3. Canny edge to image, depth to image, colorization, deblurring: `examples/spatial.ipynb`
|
47 |
+
|
48 |
+
## Generated samples
|
49 |
+
### Subject-driven generation
|
50 |
+
**Demos** (Left: condition image; Right: generated image)
|
51 |
+
|
52 |
+
<div float="left">
|
53 |
+
<img src='./assets/demo/oranges_omini.jpg' width='48%'/>
|
54 |
+
<img src='./assets/demo/rc_car_omini.jpg' width='48%' />
|
55 |
+
<img src='./assets/demo/clock_omini.jpg' width='48%' />
|
56 |
+
<img src='./assets/demo/shirt_omini.jpg' width='48%' />
|
57 |
+
</div>
|
58 |
+
|
59 |
+
<details>
|
60 |
+
<summary>Text Prompts</summary>
|
61 |
+
|
62 |
+
- Prompt1: *A close up view of this item. It is placed on a wooden table. The background is a dark room, the TV is on, and the screen is showing a cooking show. With text on the screen that reads 'Omini Control!.'*
|
63 |
+
- Prompt2: *A film style shot. On the moon, this item drives across the moon surface. A flag on it reads 'Omini'. The background is that Earth looms large in the foreground.*
|
64 |
+
- Prompt3: *In a Bauhaus style room, this item is placed on a shiny glass table, with a vase of flowers next to it. In the afternoon sun, the shadows of the blinds are cast on the wall.*
|
65 |
+
- Prompt4: *In a Bauhaus style room, this item is placed on a shiny glass table, with a vase of flowers next to it. In the afternoon sun, the shadows of the blinds are cast on the wall.*
|
66 |
+
</details>
|
67 |
+
<details>
|
68 |
+
<summary>More results</summary>
|
69 |
+
|
70 |
+
* Try on:
|
71 |
+
<img src='./assets/demo/try_on.jpg'/>
|
72 |
+
* Scene variations:
|
73 |
+
<img src='./assets/demo/scene_variation.jpg'/>
|
74 |
+
* Dreambooth dataset:
|
75 |
+
<img src='./assets/demo/dreambooth_res.jpg'/>
|
76 |
+
</details>
|
77 |
+
|
78 |
+
### Spaitally aligned control
|
79 |
+
1. **Image Inpainting** (Left: original image; Center: masked image; Right: filled image)
|
80 |
+
- Prompt: *The Mona Lisa is wearing a white VR headset with 'Omini' written on it.*
|
81 |
+
</br>
|
82 |
+
<img src='./assets/demo/monalisa_omini.jpg' width='700px' />
|
83 |
+
- Prompt: *A yellow book with the word 'OMINI' in large font on the cover. The text 'for FLUX' appears at the bottom.*
|
84 |
+
</br>
|
85 |
+
<img src='./assets/demo/book_omini.jpg' width='700px' />
|
86 |
+
2. **Other spatially aligned tasks** (Canny edge to image, depth to image, colorization, deblurring)
|
87 |
+
</br>
|
88 |
+
<details>
|
89 |
+
<summary>Click to show</summary>
|
90 |
+
<div float="left">
|
91 |
+
<img src='./assets/demo/room_corner_canny.jpg' width='48%'/>
|
92 |
+
<img src='./assets/demo/room_corner_depth.jpg' width='48%' />
|
93 |
+
<img src='./assets/demo/room_corner_coloring.jpg' width='48%' />
|
94 |
+
<img src='./assets/demo/room_corner_deblurring.jpg' width='48%' />
|
95 |
+
</div>
|
96 |
+
|
97 |
+
Prompt: *A light gray sofa stands against a white wall, featuring a black and white geometric patterned pillow. A white side table sits next to the sofa, topped with a white adjustable desk lamp and some books. Dark hardwood flooring contrasts with the pale walls and furniture.*
|
98 |
+
</details>
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
## Models
|
104 |
+
|
105 |
+
**Subject-driven control:**
|
106 |
+
| Model | Base model | Description | Resolution |
|
107 |
+
| ------------------------------------------------------------------------------------------------ | -------------- | -------------------------------------------------------------------------------------------------------- | ------------ |
|
108 |
+
| [`experimental`](https://huggingface.co/Yuanshi/OminiControl/tree/main/experimental) / `subject` | FLUX.1-schnell | The model used in the paper. | (512, 512) |
|
109 |
+
| [`omini`](https://huggingface.co/Yuanshi/OminiControl/tree/main/omini) / `subject_512` | FLUX.1-schnell | The model has been fine-tuned on a larger dataset. | (512, 512) |
|
110 |
+
| [`omini`](https://huggingface.co/Yuanshi/OminiControl/tree/main/omini) / `subject_1024` | FLUX.1-schnell | The model has been fine-tuned on a larger dataset and accommodates higher resolution. (To be released) | (1024, 1024) |
|
111 |
+
|
112 |
+
**Spatial aligned control:**
|
113 |
+
| Model | Base model | Description | Resolution |
|
114 |
+
| --------------------------------------------------------------------------------------------------------- | ---------- | -------------------------------------------------------------------------- | ------------ |
|
115 |
+
| [`experimental`](https://huggingface.co/Yuanshi/OminiControl/tree/main/experimental) / `<task_name>` | FLUX.1 | Canny edge to image, depth to image, colorization, deblurring, in-painting | (512, 512) |
|
116 |
+
| [`experimental`](https://huggingface.co/Yuanshi/OminiControl/tree/main/experimental) / `<task_name>_1024` | FLUX.1 | Supports higher resolution.(To be released) | (1024, 1024) |
|
117 |
+
|
118 |
+
## Citation
|
119 |
+
```
|
120 |
+
@article{
|
121 |
+
tan2024omini,
|
122 |
+
title={OminiControl: Minimal and Universal Control for Diffusion Transformer},
|
123 |
+
author={Zhenxiong Tan, Songhua Liu, Xingyi Yang, Qiaochu Xue, and Xinchao Wang},
|
124 |
+
journal={arXiv preprint arXiv:2411.15098},
|
125 |
+
year={2024}
|
126 |
+
}
|
127 |
+
```
|
assets/book.jpg
ADDED
Git LFS Details
|
assets/clock.jpg
ADDED
Git LFS Details
|
assets/demo/book_omini.jpg
ADDED
Git LFS Details
|
assets/demo/clock_omini.jpg
ADDED
Git LFS Details
|
assets/demo/demo_this_is_omini_control.jpg
ADDED
Git LFS Details
|
assets/demo/dreambooth_res.jpg
ADDED
Git LFS Details
|
assets/demo/monalisa_omini.jpg
ADDED
Git LFS Details
|
assets/demo/oranges_omini.jpg
ADDED
Git LFS Details
|
assets/demo/penguin_omini.jpg
ADDED
Git LFS Details
|
assets/demo/rc_car_omini.jpg
ADDED
Git LFS Details
|
assets/demo/room_corner_canny.jpg
ADDED
Git LFS Details
|
assets/demo/room_corner_coloring.jpg
ADDED
Git LFS Details
|
assets/demo/room_corner_deblurring.jpg
ADDED
Git LFS Details
|
assets/demo/room_corner_depth.jpg
ADDED
Git LFS Details
|
assets/demo/scene_variation.jpg
ADDED
Git LFS Details
|
assets/demo/shirt_omini.jpg
ADDED
Git LFS Details
|
assets/demo/try_on.jpg
ADDED
Git LFS Details
|
assets/monalisa.jpg
ADDED
Git LFS Details
|
assets/oranges.jpg
ADDED
Git LFS Details
|
assets/penguin.jpg
ADDED
Git LFS Details
|
assets/rc_car.jpg
ADDED
Git LFS Details
|
assets/room_corner.jpg
ADDED
Git LFS Details
|
assets/tshirt.jpg
ADDED
Git LFS Details
|
examples/inpainting.ipynb
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import os\n",
|
10 |
+
"\n",
|
11 |
+
"os.chdir(\"..\")"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"execution_count": null,
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"import torch\n",
|
21 |
+
"from diffusers.pipelines import FluxPipeline\n",
|
22 |
+
"from src.condition import Condition\n",
|
23 |
+
"from PIL import Image\n",
|
24 |
+
"\n",
|
25 |
+
"from src.generate import generate, seed_everything"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "code",
|
30 |
+
"execution_count": null,
|
31 |
+
"metadata": {},
|
32 |
+
"outputs": [],
|
33 |
+
"source": [
|
34 |
+
"pipe = FluxPipeline.from_pretrained(\n",
|
35 |
+
" \"black-forest-labs/FLUX.1-dev\", torch_dtype=torch.bfloat16\n",
|
36 |
+
")\n",
|
37 |
+
"pipe = pipe.to(\"cuda\")"
|
38 |
+
]
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"cell_type": "code",
|
42 |
+
"execution_count": null,
|
43 |
+
"metadata": {},
|
44 |
+
"outputs": [],
|
45 |
+
"source": [
|
46 |
+
"pipe.load_lora_weights(\n",
|
47 |
+
" \"Yuanshi/OminiControl\",\n",
|
48 |
+
" weight_name=f\"experimental/fill.safetensors\",\n",
|
49 |
+
" adapter_name=\"fill\",\n",
|
50 |
+
")"
|
51 |
+
]
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"cell_type": "code",
|
55 |
+
"execution_count": null,
|
56 |
+
"metadata": {},
|
57 |
+
"outputs": [],
|
58 |
+
"source": [
|
59 |
+
"image = Image.open(\"assets/monalisa.jpg\").convert(\"RGB\").resize((512, 512))\n",
|
60 |
+
"\n",
|
61 |
+
"masked_image = image.copy()\n",
|
62 |
+
"masked_image.paste((0, 0, 0), (128, 100, 384, 220))\n",
|
63 |
+
"\n",
|
64 |
+
"condition = Condition(\"fill\", masked_image)\n",
|
65 |
+
"\n",
|
66 |
+
"seed_everything()\n",
|
67 |
+
"result_img = generate(\n",
|
68 |
+
" pipe,\n",
|
69 |
+
" prompt=\"The Mona Lisa is wearing a white VR headset with 'Omini' written on it.\",\n",
|
70 |
+
" conditions=[condition],\n",
|
71 |
+
").images[0]\n",
|
72 |
+
"\n",
|
73 |
+
"concat_image = Image.new(\"RGB\", (1536, 512))\n",
|
74 |
+
"concat_image.paste(image, (0, 0))\n",
|
75 |
+
"concat_image.paste(condition.condition, (512, 0))\n",
|
76 |
+
"concat_image.paste(result_img, (1024, 0))\n",
|
77 |
+
"concat_image"
|
78 |
+
]
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"cell_type": "code",
|
82 |
+
"execution_count": null,
|
83 |
+
"metadata": {},
|
84 |
+
"outputs": [],
|
85 |
+
"source": [
|
86 |
+
"image = Image.open(\"assets/book.jpg\").convert(\"RGB\").resize((512, 512))\n",
|
87 |
+
"\n",
|
88 |
+
"w, h, min_dim = image.size + (min(image.size),)\n",
|
89 |
+
"image = image.crop(\n",
|
90 |
+
" ((w - min_dim) // 2, (h - min_dim) // 2, (w + min_dim) // 2, (h + min_dim) // 2)\n",
|
91 |
+
").resize((512, 512))\n",
|
92 |
+
"\n",
|
93 |
+
"\n",
|
94 |
+
"masked_image = image.copy()\n",
|
95 |
+
"masked_image.paste((0, 0, 0), (150, 150, 350, 250))\n",
|
96 |
+
"masked_image.paste((0, 0, 0), (200, 380, 320, 420))\n",
|
97 |
+
"\n",
|
98 |
+
"condition = Condition(\"fill\", masked_image)\n",
|
99 |
+
"\n",
|
100 |
+
"seed_everything()\n",
|
101 |
+
"result_img = generate(\n",
|
102 |
+
" pipe,\n",
|
103 |
+
" prompt=\"A yellow book with the word 'OMINI' in large font on the cover. The text 'for FLUX' appears at the bottom.\",\n",
|
104 |
+
" conditions=[condition],\n",
|
105 |
+
").images[0]\n",
|
106 |
+
"\n",
|
107 |
+
"concat_image = Image.new(\"RGB\", (1536, 512))\n",
|
108 |
+
"concat_image.paste(image, (0, 0))\n",
|
109 |
+
"concat_image.paste(condition.condition, (512, 0))\n",
|
110 |
+
"concat_image.paste(result_img, (1024, 0))\n",
|
111 |
+
"concat_image"
|
112 |
+
]
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"cell_type": "code",
|
116 |
+
"execution_count": null,
|
117 |
+
"metadata": {},
|
118 |
+
"outputs": [],
|
119 |
+
"source": []
|
120 |
+
}
|
121 |
+
],
|
122 |
+
"metadata": {
|
123 |
+
"kernelspec": {
|
124 |
+
"display_name": "base",
|
125 |
+
"language": "python",
|
126 |
+
"name": "python3"
|
127 |
+
},
|
128 |
+
"language_info": {
|
129 |
+
"codemirror_mode": {
|
130 |
+
"name": "ipython",
|
131 |
+
"version": 3
|
132 |
+
},
|
133 |
+
"file_extension": ".py",
|
134 |
+
"mimetype": "text/x-python",
|
135 |
+
"name": "python",
|
136 |
+
"nbconvert_exporter": "python",
|
137 |
+
"pygments_lexer": "ipython3",
|
138 |
+
"version": "3.12.7"
|
139 |
+
}
|
140 |
+
},
|
141 |
+
"nbformat": 4,
|
142 |
+
"nbformat_minor": 2
|
143 |
+
}
|
examples/spatial.ipynb
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import os\n",
|
10 |
+
"\n",
|
11 |
+
"os.chdir(\"..\")"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"execution_count": null,
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"import torch\n",
|
21 |
+
"from diffusers.pipelines import FluxPipeline\n",
|
22 |
+
"from src.condition import Condition\n",
|
23 |
+
"from PIL import Image\n",
|
24 |
+
"\n",
|
25 |
+
"from src.generate import generate, seed_everything"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "code",
|
30 |
+
"execution_count": null,
|
31 |
+
"metadata": {},
|
32 |
+
"outputs": [],
|
33 |
+
"source": [
|
34 |
+
"pipe = FluxPipeline.from_pretrained(\n",
|
35 |
+
" \"black-forest-labs/FLUX.1-dev\", torch_dtype=torch.bfloat16\n",
|
36 |
+
")\n",
|
37 |
+
"pipe = pipe.to(\"cuda\")"
|
38 |
+
]
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"cell_type": "code",
|
42 |
+
"execution_count": null,
|
43 |
+
"metadata": {},
|
44 |
+
"outputs": [],
|
45 |
+
"source": [
|
46 |
+
"for condition_type in [\"canny\", \"depth\", \"coloring\", \"deblurring\"]:\n",
|
47 |
+
" pipe.load_lora_weights(\n",
|
48 |
+
" \"Yuanshi/OminiControl\",\n",
|
49 |
+
" weight_name=f\"experimental/{condition_type}.safetensors\",\n",
|
50 |
+
" adapter_name=condition_type,\n",
|
51 |
+
" )"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "code",
|
56 |
+
"execution_count": null,
|
57 |
+
"metadata": {},
|
58 |
+
"outputs": [],
|
59 |
+
"source": [
|
60 |
+
"image = Image.open(\"assets/coffee.png\").convert(\"RGB\")\n",
|
61 |
+
"\n",
|
62 |
+
"w, h, min_dim = image.size + (min(image.size),)\n",
|
63 |
+
"image = image.crop(\n",
|
64 |
+
" ((w - min_dim) // 2, (h - min_dim) // 2, (w + min_dim) // 2, (h + min_dim) // 2)\n",
|
65 |
+
").resize((512, 512))\n",
|
66 |
+
"\n",
|
67 |
+
"prompt = \"In a bright room. A cup of a coffee with some beans on the side. They are placed on a dark wooden table.\""
|
68 |
+
]
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"cell_type": "code",
|
72 |
+
"execution_count": null,
|
73 |
+
"metadata": {},
|
74 |
+
"outputs": [],
|
75 |
+
"source": [
|
76 |
+
"condition = Condition(\"canny\", image)\n",
|
77 |
+
"\n",
|
78 |
+
"seed_everything()\n",
|
79 |
+
"\n",
|
80 |
+
"result_img = generate(\n",
|
81 |
+
" pipe,\n",
|
82 |
+
" prompt=prompt,\n",
|
83 |
+
" conditions=[condition],\n",
|
84 |
+
").images[0]\n",
|
85 |
+
"\n",
|
86 |
+
"concat_image = Image.new(\"RGB\", (1536, 512))\n",
|
87 |
+
"concat_image.paste(image, (0, 0))\n",
|
88 |
+
"concat_image.paste(condition.condition, (512, 0))\n",
|
89 |
+
"concat_image.paste(result_img, (1024, 0))\n",
|
90 |
+
"concat_image"
|
91 |
+
]
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"cell_type": "code",
|
95 |
+
"execution_count": null,
|
96 |
+
"metadata": {},
|
97 |
+
"outputs": [],
|
98 |
+
"source": [
|
99 |
+
"condition = Condition(\"depth\", image)\n",
|
100 |
+
"\n",
|
101 |
+
"seed_everything()\n",
|
102 |
+
"\n",
|
103 |
+
"result_img = generate(\n",
|
104 |
+
" pipe,\n",
|
105 |
+
" prompt=prompt,\n",
|
106 |
+
" conditions=[condition],\n",
|
107 |
+
").images[0]\n",
|
108 |
+
"\n",
|
109 |
+
"concat_image = Image.new(\"RGB\", (1536, 512))\n",
|
110 |
+
"concat_image.paste(image, (0, 0))\n",
|
111 |
+
"concat_image.paste(condition.condition, (512, 0))\n",
|
112 |
+
"concat_image.paste(result_img, (1024, 0))\n",
|
113 |
+
"concat_image"
|
114 |
+
]
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"cell_type": "code",
|
118 |
+
"execution_count": null,
|
119 |
+
"metadata": {},
|
120 |
+
"outputs": [],
|
121 |
+
"source": [
|
122 |
+
"condition = Condition(\"deblurring\", image)\n",
|
123 |
+
"\n",
|
124 |
+
"seed_everything()\n",
|
125 |
+
"\n",
|
126 |
+
"result_img = generate(\n",
|
127 |
+
" pipe,\n",
|
128 |
+
" prompt=prompt,\n",
|
129 |
+
" conditions=[condition],\n",
|
130 |
+
").images[0]\n",
|
131 |
+
"\n",
|
132 |
+
"concat_image = Image.new(\"RGB\", (1536, 512))\n",
|
133 |
+
"concat_image.paste(image, (0, 0))\n",
|
134 |
+
"concat_image.paste(condition.condition, (512, 0))\n",
|
135 |
+
"concat_image.paste(result_img, (1024, 0))\n",
|
136 |
+
"concat_image"
|
137 |
+
]
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"cell_type": "code",
|
141 |
+
"execution_count": null,
|
142 |
+
"metadata": {},
|
143 |
+
"outputs": [],
|
144 |
+
"source": [
|
145 |
+
"condition = Condition(\"coloring\", image)\n",
|
146 |
+
"\n",
|
147 |
+
"seed_everything()\n",
|
148 |
+
"\n",
|
149 |
+
"result_img = generate(\n",
|
150 |
+
" pipe,\n",
|
151 |
+
" prompt=prompt,\n",
|
152 |
+
" conditions=[condition],\n",
|
153 |
+
").images[0]\n",
|
154 |
+
"\n",
|
155 |
+
"concat_image = Image.new(\"RGB\", (1536, 512))\n",
|
156 |
+
"concat_image.paste(image, (0, 0))\n",
|
157 |
+
"concat_image.paste(condition.condition, (512, 0))\n",
|
158 |
+
"concat_image.paste(result_img, (1024, 0))\n",
|
159 |
+
"concat_image"
|
160 |
+
]
|
161 |
+
}
|
162 |
+
],
|
163 |
+
"metadata": {
|
164 |
+
"kernelspec": {
|
165 |
+
"display_name": "base",
|
166 |
+
"language": "python",
|
167 |
+
"name": "python3"
|
168 |
+
},
|
169 |
+
"language_info": {
|
170 |
+
"codemirror_mode": {
|
171 |
+
"name": "ipython",
|
172 |
+
"version": 3
|
173 |
+
},
|
174 |
+
"file_extension": ".py",
|
175 |
+
"mimetype": "text/x-python",
|
176 |
+
"name": "python",
|
177 |
+
"nbconvert_exporter": "python",
|
178 |
+
"pygments_lexer": "ipython3",
|
179 |
+
"version": "3.12.7"
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"nbformat": 4,
|
183 |
+
"nbformat_minor": 2
|
184 |
+
}
|
examples/subject.ipynb
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import os\n",
|
10 |
+
"\n",
|
11 |
+
"os.chdir(\"..\")"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"execution_count": null,
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"import torch\n",
|
21 |
+
"from diffusers.pipelines import FluxPipeline\n",
|
22 |
+
"from src.condition import Condition\n",
|
23 |
+
"from PIL import Image\n",
|
24 |
+
"\n",
|
25 |
+
"from src.generate import generate, seed_everything"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "code",
|
30 |
+
"execution_count": null,
|
31 |
+
"metadata": {},
|
32 |
+
"outputs": [],
|
33 |
+
"source": [
|
34 |
+
"pipe = FluxPipeline.from_pretrained(\n",
|
35 |
+
" \"black-forest-labs/FLUX.1-schnell\", torch_dtype=torch.bfloat16\n",
|
36 |
+
")\n",
|
37 |
+
"pipe = pipe.to(\"cuda\")\n",
|
38 |
+
"pipe.load_lora_weights(\n",
|
39 |
+
" \"Yuanshi/OminiControl\",\n",
|
40 |
+
" weight_name=f\"omini/subject_512.safetensors\",\n",
|
41 |
+
" adapter_name=\"subject\",\n",
|
42 |
+
")"
|
43 |
+
]
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"cell_type": "code",
|
47 |
+
"execution_count": null,
|
48 |
+
"metadata": {},
|
49 |
+
"outputs": [],
|
50 |
+
"source": [
|
51 |
+
"image = Image.open(\"assets/penguin.jpg\").convert(\"RGB\").resize((512, 512))\n",
|
52 |
+
"\n",
|
53 |
+
"condition = Condition(\"subject\", image)\n",
|
54 |
+
"\n",
|
55 |
+
"prompt = \"On Christmas evening, on a crowded sidewalk, this item sits on the road, covered in snow and wearing a Christmas hat.\"\n",
|
56 |
+
"\n",
|
57 |
+
"\n",
|
58 |
+
"seed_everything(0)\n",
|
59 |
+
"\n",
|
60 |
+
"result_img = generate(\n",
|
61 |
+
" pipe,\n",
|
62 |
+
" prompt=prompt,\n",
|
63 |
+
" conditions=[condition],\n",
|
64 |
+
" num_inference_steps=8,\n",
|
65 |
+
" height=512,\n",
|
66 |
+
" width=512,\n",
|
67 |
+
").images[0]\n",
|
68 |
+
"\n",
|
69 |
+
"concat_image = Image.new(\"RGB\", (1024, 512))\n",
|
70 |
+
"concat_image.paste(image, (0, 0))\n",
|
71 |
+
"concat_image.paste(result_img, (512, 0))\n",
|
72 |
+
"concat_image"
|
73 |
+
]
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"cell_type": "code",
|
77 |
+
"execution_count": null,
|
78 |
+
"metadata": {},
|
79 |
+
"outputs": [],
|
80 |
+
"source": [
|
81 |
+
"image = Image.open(\"assets/tshirt.jpg\").convert(\"RGB\").resize((512, 512))\n",
|
82 |
+
"\n",
|
83 |
+
"condition = Condition(\"subject\", image)\n",
|
84 |
+
"\n",
|
85 |
+
"prompt = \"On the beach, a lady sits under a beach umbrella. She's wearing this shirt and has a big smile on her face, with her surfboard hehind her. The sun is setting in the background. The sky is a beautiful shade of orange and purple.\"\n",
|
86 |
+
"\n",
|
87 |
+
"\n",
|
88 |
+
"seed_everything()\n",
|
89 |
+
"\n",
|
90 |
+
"result_img = generate(\n",
|
91 |
+
" pipe,\n",
|
92 |
+
" prompt=prompt,\n",
|
93 |
+
" conditions=[condition],\n",
|
94 |
+
" num_inference_steps=8,\n",
|
95 |
+
" height=512,\n",
|
96 |
+
" width=512,\n",
|
97 |
+
").images[0]\n",
|
98 |
+
"\n",
|
99 |
+
"concat_image = Image.new(\"RGB\", (1024, 512))\n",
|
100 |
+
"concat_image.paste(condition.condition, (0, 0))\n",
|
101 |
+
"concat_image.paste(result_img, (512, 0))\n",
|
102 |
+
"concat_image"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"cell_type": "code",
|
107 |
+
"execution_count": null,
|
108 |
+
"metadata": {},
|
109 |
+
"outputs": [],
|
110 |
+
"source": [
|
111 |
+
"image = Image.open(\"assets/rc_car.jpg\").convert(\"RGB\").resize((512, 512))\n",
|
112 |
+
"\n",
|
113 |
+
"condition = Condition(\"subject\", image)\n",
|
114 |
+
"\n",
|
115 |
+
"prompt = \"A film style shot. On the moon, this item drives across the moon surface. The background is that Earth looms large in the foreground.\"\n",
|
116 |
+
"\n",
|
117 |
+
"seed_everything()\n",
|
118 |
+
"\n",
|
119 |
+
"result_img = generate(\n",
|
120 |
+
" pipe,\n",
|
121 |
+
" prompt=prompt,\n",
|
122 |
+
" conditions=[condition],\n",
|
123 |
+
" num_inference_steps=8,\n",
|
124 |
+
" height=512,\n",
|
125 |
+
" width=512,\n",
|
126 |
+
").images[0]\n",
|
127 |
+
"\n",
|
128 |
+
"concat_image = Image.new(\"RGB\", (1024, 512))\n",
|
129 |
+
"concat_image.paste(condition.condition, (0, 0))\n",
|
130 |
+
"concat_image.paste(result_img, (512, 0))\n",
|
131 |
+
"concat_image"
|
132 |
+
]
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"cell_type": "code",
|
136 |
+
"execution_count": null,
|
137 |
+
"metadata": {},
|
138 |
+
"outputs": [],
|
139 |
+
"source": [
|
140 |
+
"image = Image.open(\"assets/clock.jpg\").convert(\"RGB\").resize((512, 512))\n",
|
141 |
+
"\n",
|
142 |
+
"condition = Condition(\"subject\", image)\n",
|
143 |
+
"\n",
|
144 |
+
"prompt = \"In a Bauhaus style room, this item is placed on a shiny glass table, with a vase of flowers next to it. In the afternoon sun, the shadows of the blinds are cast on the wall.\"\n",
|
145 |
+
"\n",
|
146 |
+
"seed_everything()\n",
|
147 |
+
"\n",
|
148 |
+
"result_img = generate(\n",
|
149 |
+
" pipe,\n",
|
150 |
+
" prompt=prompt,\n",
|
151 |
+
" conditions=[condition],\n",
|
152 |
+
" num_inference_steps=8,\n",
|
153 |
+
" height=512,\n",
|
154 |
+
" width=512,\n",
|
155 |
+
").images[0]\n",
|
156 |
+
"\n",
|
157 |
+
"concat_image = Image.new(\"RGB\", (1024, 512))\n",
|
158 |
+
"concat_image.paste(condition.condition, (0, 0))\n",
|
159 |
+
"concat_image.paste(result_img, (512, 0))\n",
|
160 |
+
"concat_image"
|
161 |
+
]
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"cell_type": "code",
|
165 |
+
"execution_count": null,
|
166 |
+
"metadata": {},
|
167 |
+
"outputs": [],
|
168 |
+
"source": [
|
169 |
+
"image = Image.open(\"assets/oranges.jpg\").convert(\"RGB\").resize((512, 512))\n",
|
170 |
+
"\n",
|
171 |
+
"condition = Condition(\"subject\", image)\n",
|
172 |
+
"\n",
|
173 |
+
"prompt = \"A very close up view of this item. It is placed on a wooden table. The background is a dark room, the TV is on, and the screen is showing a cooking show.\"\n",
|
174 |
+
"\n",
|
175 |
+
"seed_everything()\n",
|
176 |
+
"\n",
|
177 |
+
"result_img = generate(\n",
|
178 |
+
" pipe,\n",
|
179 |
+
" prompt=prompt,\n",
|
180 |
+
" conditions=[condition],\n",
|
181 |
+
" num_inference_steps=8,\n",
|
182 |
+
" height=512,\n",
|
183 |
+
" width=512,\n",
|
184 |
+
").images[0]\n",
|
185 |
+
"\n",
|
186 |
+
"concat_image = Image.new(\"RGB\", (1024, 512))\n",
|
187 |
+
"concat_image.paste(condition.condition, (0, 0))\n",
|
188 |
+
"concat_image.paste(result_img, (512, 0))\n",
|
189 |
+
"concat_image"
|
190 |
+
]
|
191 |
+
}
|
192 |
+
],
|
193 |
+
"metadata": {
|
194 |
+
"kernelspec": {
|
195 |
+
"display_name": "base",
|
196 |
+
"language": "python",
|
197 |
+
"name": "python3"
|
198 |
+
},
|
199 |
+
"language_info": {
|
200 |
+
"codemirror_mode": {
|
201 |
+
"name": "ipython",
|
202 |
+
"version": 3
|
203 |
+
},
|
204 |
+
"file_extension": ".py",
|
205 |
+
"mimetype": "text/x-python",
|
206 |
+
"name": "python",
|
207 |
+
"nbconvert_exporter": "python",
|
208 |
+
"pygments_lexer": "ipython3",
|
209 |
+
"version": "3.12.7"
|
210 |
+
}
|
211 |
+
},
|
212 |
+
"nbformat": 4,
|
213 |
+
"nbformat_minor": 2
|
214 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
diffusers
|
3 |
+
peft
|
4 |
+
opencv-python
|
5 |
+
protobuf
|
6 |
+
sentencepiece
|
src/block.py
ADDED
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from typing import List, Union, Optional, Dict, Any, Callable
|
3 |
+
from diffusers.models.attention_processor import Attention, F
|
4 |
+
from .lora_controller import enable_lora
|
5 |
+
|
6 |
+
|
7 |
+
def attn_forward(
|
8 |
+
attn: Attention,
|
9 |
+
hidden_states: torch.FloatTensor,
|
10 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
11 |
+
condition_latents: torch.FloatTensor = None,
|
12 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
13 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
14 |
+
cond_rotary_emb: Optional[torch.Tensor] = None,
|
15 |
+
model_config: Optional[Dict[str, Any]] = {},
|
16 |
+
) -> torch.FloatTensor:
|
17 |
+
batch_size, _, _ = (
|
18 |
+
hidden_states.shape
|
19 |
+
if encoder_hidden_states is None
|
20 |
+
else encoder_hidden_states.shape
|
21 |
+
)
|
22 |
+
|
23 |
+
with enable_lora(
|
24 |
+
(attn.to_q, attn.to_k, attn.to_v), model_config.get("latent_lora", False)
|
25 |
+
):
|
26 |
+
# `sample` projections.
|
27 |
+
query = attn.to_q(hidden_states)
|
28 |
+
key = attn.to_k(hidden_states)
|
29 |
+
value = attn.to_v(hidden_states)
|
30 |
+
|
31 |
+
inner_dim = key.shape[-1]
|
32 |
+
head_dim = inner_dim // attn.heads
|
33 |
+
|
34 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
35 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
36 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
37 |
+
|
38 |
+
if attn.norm_q is not None:
|
39 |
+
query = attn.norm_q(query)
|
40 |
+
if attn.norm_k is not None:
|
41 |
+
key = attn.norm_k(key)
|
42 |
+
|
43 |
+
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
|
44 |
+
if encoder_hidden_states is not None:
|
45 |
+
# `context` projections.
|
46 |
+
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
47 |
+
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
48 |
+
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
49 |
+
|
50 |
+
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
51 |
+
batch_size, -1, attn.heads, head_dim
|
52 |
+
).transpose(1, 2)
|
53 |
+
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
54 |
+
batch_size, -1, attn.heads, head_dim
|
55 |
+
).transpose(1, 2)
|
56 |
+
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
57 |
+
batch_size, -1, attn.heads, head_dim
|
58 |
+
).transpose(1, 2)
|
59 |
+
|
60 |
+
if attn.norm_added_q is not None:
|
61 |
+
encoder_hidden_states_query_proj = attn.norm_added_q(
|
62 |
+
encoder_hidden_states_query_proj
|
63 |
+
)
|
64 |
+
if attn.norm_added_k is not None:
|
65 |
+
encoder_hidden_states_key_proj = attn.norm_added_k(
|
66 |
+
encoder_hidden_states_key_proj
|
67 |
+
)
|
68 |
+
|
69 |
+
# attention
|
70 |
+
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
71 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
72 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
73 |
+
|
74 |
+
if image_rotary_emb is not None:
|
75 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
76 |
+
|
77 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
78 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
79 |
+
|
80 |
+
if condition_latents is not None:
|
81 |
+
cond_query = attn.to_q(condition_latents)
|
82 |
+
cond_key = attn.to_k(condition_latents)
|
83 |
+
cond_value = attn.to_v(condition_latents)
|
84 |
+
|
85 |
+
cond_query = cond_query.view(batch_size, -1, attn.heads, head_dim).transpose(
|
86 |
+
1, 2
|
87 |
+
)
|
88 |
+
cond_key = cond_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
89 |
+
cond_value = cond_value.view(batch_size, -1, attn.heads, head_dim).transpose(
|
90 |
+
1, 2
|
91 |
+
)
|
92 |
+
if attn.norm_q is not None:
|
93 |
+
cond_query = attn.norm_q(cond_query)
|
94 |
+
if attn.norm_k is not None:
|
95 |
+
cond_key = attn.norm_k(cond_key)
|
96 |
+
|
97 |
+
if cond_rotary_emb is not None:
|
98 |
+
cond_query = apply_rotary_emb(cond_query, cond_rotary_emb)
|
99 |
+
cond_key = apply_rotary_emb(cond_key, cond_rotary_emb)
|
100 |
+
|
101 |
+
if condition_latents is not None:
|
102 |
+
query = torch.cat([query, cond_query], dim=2)
|
103 |
+
key = torch.cat([key, cond_key], dim=2)
|
104 |
+
value = torch.cat([value, cond_value], dim=2)
|
105 |
+
|
106 |
+
if not model_config.get("union_cond_attn", True):
|
107 |
+
# If we don't want to use the union condition attention, we need to mask the attention
|
108 |
+
# between the hidden states and the condition latents
|
109 |
+
attention_mask = torch.ones(
|
110 |
+
query.shape[2], key.shape[2], device=query.device, dtype=torch.bool
|
111 |
+
)
|
112 |
+
condition_n = cond_query.shape[2]
|
113 |
+
attention_mask[-condition_n:, :-condition_n] = False
|
114 |
+
attention_mask[:-condition_n, -condition_n:] = False
|
115 |
+
if hasattr(attn, "c_factor"):
|
116 |
+
attention_mask = torch.zeros(
|
117 |
+
query.shape[2], key.shape[2], device=query.device, dtype=query.dtype
|
118 |
+
)
|
119 |
+
condition_n = cond_query.shape[2]
|
120 |
+
bias = torch.log(attn.c_factor[0])
|
121 |
+
attention_mask[-condition_n:, :-condition_n] = bias
|
122 |
+
attention_mask[:-condition_n, -condition_n:] = bias
|
123 |
+
hidden_states = F.scaled_dot_product_attention(
|
124 |
+
query, key, value, dropout_p=0.0, is_causal=False, attn_mask=attention_mask
|
125 |
+
)
|
126 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
127 |
+
batch_size, -1, attn.heads * head_dim
|
128 |
+
)
|
129 |
+
hidden_states = hidden_states.to(query.dtype)
|
130 |
+
|
131 |
+
if encoder_hidden_states is not None:
|
132 |
+
if condition_latents is not None:
|
133 |
+
encoder_hidden_states, hidden_states, condition_latents = (
|
134 |
+
hidden_states[:, : encoder_hidden_states.shape[1]],
|
135 |
+
hidden_states[
|
136 |
+
:, encoder_hidden_states.shape[1] : -condition_latents.shape[1]
|
137 |
+
],
|
138 |
+
hidden_states[:, -condition_latents.shape[1] :],
|
139 |
+
)
|
140 |
+
else:
|
141 |
+
encoder_hidden_states, hidden_states = (
|
142 |
+
hidden_states[:, : encoder_hidden_states.shape[1]],
|
143 |
+
hidden_states[:, encoder_hidden_states.shape[1] :],
|
144 |
+
)
|
145 |
+
|
146 |
+
with enable_lora((attn.to_out[0],), model_config.get("latent_lora", False)):
|
147 |
+
# linear proj
|
148 |
+
hidden_states = attn.to_out[0](hidden_states)
|
149 |
+
# dropout
|
150 |
+
hidden_states = attn.to_out[1](hidden_states)
|
151 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
152 |
+
|
153 |
+
if condition_latents is not None:
|
154 |
+
condition_latents = attn.to_out[0](condition_latents)
|
155 |
+
condition_latents = attn.to_out[1](condition_latents)
|
156 |
+
|
157 |
+
return (
|
158 |
+
(hidden_states, encoder_hidden_states, condition_latents)
|
159 |
+
if condition_latents is not None
|
160 |
+
else (hidden_states, encoder_hidden_states)
|
161 |
+
)
|
162 |
+
elif condition_latents is not None:
|
163 |
+
# if there are condition_latents, we need to separate the hidden_states and the condition_latents
|
164 |
+
hidden_states, condition_latents = (
|
165 |
+
hidden_states[:, : -condition_latents.shape[1]],
|
166 |
+
hidden_states[:, -condition_latents.shape[1] :],
|
167 |
+
)
|
168 |
+
return hidden_states, condition_latents
|
169 |
+
else:
|
170 |
+
return hidden_states
|
171 |
+
|
172 |
+
|
173 |
+
def block_forward(
|
174 |
+
self,
|
175 |
+
hidden_states: torch.FloatTensor,
|
176 |
+
encoder_hidden_states: torch.FloatTensor,
|
177 |
+
condition_latents: torch.FloatTensor,
|
178 |
+
temb: torch.FloatTensor,
|
179 |
+
cond_temb: torch.FloatTensor,
|
180 |
+
cond_rotary_emb=None,
|
181 |
+
image_rotary_emb=None,
|
182 |
+
model_config: Optional[Dict[str, Any]] = {},
|
183 |
+
):
|
184 |
+
use_cond = condition_latents is not None
|
185 |
+
with enable_lora((self.norm1.linear,), model_config.get("latent_lora", False)):
|
186 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
187 |
+
hidden_states, emb=temb
|
188 |
+
)
|
189 |
+
|
190 |
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = (
|
191 |
+
self.norm1_context(encoder_hidden_states, emb=temb)
|
192 |
+
)
|
193 |
+
|
194 |
+
if use_cond:
|
195 |
+
(
|
196 |
+
norm_condition_latents,
|
197 |
+
cond_gate_msa,
|
198 |
+
cond_shift_mlp,
|
199 |
+
cond_scale_mlp,
|
200 |
+
cond_gate_mlp,
|
201 |
+
) = self.norm1(condition_latents, emb=cond_temb)
|
202 |
+
|
203 |
+
# Attention.
|
204 |
+
result = attn_forward(
|
205 |
+
self.attn,
|
206 |
+
model_config=model_config,
|
207 |
+
hidden_states=norm_hidden_states,
|
208 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
209 |
+
condition_latents=norm_condition_latents if use_cond else None,
|
210 |
+
image_rotary_emb=image_rotary_emb,
|
211 |
+
cond_rotary_emb=cond_rotary_emb if use_cond else None,
|
212 |
+
)
|
213 |
+
attn_output, context_attn_output = result[:2]
|
214 |
+
cond_attn_output = result[2] if use_cond else None
|
215 |
+
|
216 |
+
# Process attention outputs for the `hidden_states`.
|
217 |
+
# 1. hidden_states
|
218 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
219 |
+
hidden_states = hidden_states + attn_output
|
220 |
+
# 2. encoder_hidden_states
|
221 |
+
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
222 |
+
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
223 |
+
# 3. condition_latents
|
224 |
+
if use_cond:
|
225 |
+
cond_attn_output = cond_gate_msa.unsqueeze(1) * cond_attn_output
|
226 |
+
condition_latents = condition_latents + cond_attn_output
|
227 |
+
if model_config.get("add_cond_attn", False):
|
228 |
+
hidden_states += cond_attn_output
|
229 |
+
|
230 |
+
# LayerNorm + MLP.
|
231 |
+
# 1. hidden_states
|
232 |
+
norm_hidden_states = self.norm2(hidden_states)
|
233 |
+
norm_hidden_states = (
|
234 |
+
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
235 |
+
)
|
236 |
+
# 2. encoder_hidden_states
|
237 |
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
238 |
+
norm_encoder_hidden_states = (
|
239 |
+
norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
240 |
+
)
|
241 |
+
# 3. condition_latents
|
242 |
+
if use_cond:
|
243 |
+
norm_condition_latents = self.norm2(condition_latents)
|
244 |
+
norm_condition_latents = (
|
245 |
+
norm_condition_latents * (1 + cond_scale_mlp[:, None])
|
246 |
+
+ cond_shift_mlp[:, None]
|
247 |
+
)
|
248 |
+
|
249 |
+
# Feed-forward.
|
250 |
+
with enable_lora((self.ff.net[2],), model_config.get("latent_lora", False)):
|
251 |
+
# 1. hidden_states
|
252 |
+
ff_output = self.ff(norm_hidden_states)
|
253 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
254 |
+
# 2. encoder_hidden_states
|
255 |
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
256 |
+
context_ff_output = c_gate_mlp.unsqueeze(1) * context_ff_output
|
257 |
+
# 3. condition_latents
|
258 |
+
if use_cond:
|
259 |
+
cond_ff_output = self.ff(norm_condition_latents)
|
260 |
+
cond_ff_output = cond_gate_mlp.unsqueeze(1) * cond_ff_output
|
261 |
+
|
262 |
+
# Process feed-forward outputs.
|
263 |
+
hidden_states = hidden_states + ff_output
|
264 |
+
encoder_hidden_states = encoder_hidden_states + context_ff_output
|
265 |
+
if use_cond:
|
266 |
+
condition_latents = condition_latents + cond_ff_output
|
267 |
+
|
268 |
+
# Clip to avoid overflow.
|
269 |
+
if encoder_hidden_states.dtype == torch.float16:
|
270 |
+
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
271 |
+
|
272 |
+
return encoder_hidden_states, hidden_states, condition_latents if use_cond else None
|
273 |
+
|
274 |
+
|
275 |
+
def single_block_forward(
|
276 |
+
self,
|
277 |
+
hidden_states: torch.FloatTensor,
|
278 |
+
temb: torch.FloatTensor,
|
279 |
+
image_rotary_emb=None,
|
280 |
+
condition_latents: torch.FloatTensor = None,
|
281 |
+
cond_temb: torch.FloatTensor = None,
|
282 |
+
cond_rotary_emb=None,
|
283 |
+
model_config: Optional[Dict[str, Any]] = {},
|
284 |
+
):
|
285 |
+
|
286 |
+
using_cond = condition_latents is not None
|
287 |
+
residual = hidden_states
|
288 |
+
with enable_lora(
|
289 |
+
(
|
290 |
+
self.norm.linear,
|
291 |
+
self.proj_mlp,
|
292 |
+
),
|
293 |
+
model_config.get("latent_lora", False),
|
294 |
+
):
|
295 |
+
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
296 |
+
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
297 |
+
if using_cond:
|
298 |
+
residual_cond = condition_latents
|
299 |
+
norm_condition_latents, cond_gate = self.norm(condition_latents, emb=cond_temb)
|
300 |
+
mlp_cond_hidden_states = self.act_mlp(self.proj_mlp(norm_condition_latents))
|
301 |
+
|
302 |
+
attn_output = attn_forward(
|
303 |
+
self.attn,
|
304 |
+
model_config=model_config,
|
305 |
+
hidden_states=norm_hidden_states,
|
306 |
+
image_rotary_emb=image_rotary_emb,
|
307 |
+
**(
|
308 |
+
{
|
309 |
+
"condition_latents": norm_condition_latents,
|
310 |
+
"cond_rotary_emb": cond_rotary_emb if using_cond else None,
|
311 |
+
}
|
312 |
+
if using_cond
|
313 |
+
else {}
|
314 |
+
),
|
315 |
+
)
|
316 |
+
if using_cond:
|
317 |
+
attn_output, cond_attn_output = attn_output
|
318 |
+
|
319 |
+
with enable_lora((self.proj_out,), model_config.get("latent_lora", False)):
|
320 |
+
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
321 |
+
gate = gate.unsqueeze(1)
|
322 |
+
hidden_states = gate * self.proj_out(hidden_states)
|
323 |
+
hidden_states = residual + hidden_states
|
324 |
+
if using_cond:
|
325 |
+
condition_latents = torch.cat([cond_attn_output, mlp_cond_hidden_states], dim=2)
|
326 |
+
cond_gate = cond_gate.unsqueeze(1)
|
327 |
+
condition_latents = cond_gate * self.proj_out(condition_latents)
|
328 |
+
condition_latents = residual_cond + condition_latents
|
329 |
+
|
330 |
+
if hidden_states.dtype == torch.float16:
|
331 |
+
hidden_states = hidden_states.clip(-65504, 65504)
|
332 |
+
|
333 |
+
return hidden_states if not using_cond else (hidden_states, condition_latents)
|
src/condition.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from typing import Optional, Union, List, Tuple
|
3 |
+
from diffusers.pipelines import FluxPipeline
|
4 |
+
from PIL import Image, ImageFilter
|
5 |
+
import numpy as np
|
6 |
+
import cv2
|
7 |
+
|
8 |
+
condition_dict = {
|
9 |
+
"depth": 0,
|
10 |
+
"canny": 1,
|
11 |
+
"subject": 4,
|
12 |
+
"coloring": 6,
|
13 |
+
"deblurring": 7,
|
14 |
+
"fill": 9,
|
15 |
+
}
|
16 |
+
|
17 |
+
|
18 |
+
class Condition(object):
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
condition_type: str,
|
22 |
+
raw_img: Union[Image.Image, torch.Tensor] = None,
|
23 |
+
condition: Union[Image.Image, torch.Tensor] = None,
|
24 |
+
mask=None,
|
25 |
+
) -> None:
|
26 |
+
self.condition_type = condition_type
|
27 |
+
assert raw_img is not None or condition is not None
|
28 |
+
if raw_img is not None:
|
29 |
+
self.condition = self.get_condition(condition_type, raw_img)
|
30 |
+
else:
|
31 |
+
self.condition = condition
|
32 |
+
# TODO: Add mask support
|
33 |
+
assert mask is None, "Mask not supported yet"
|
34 |
+
|
35 |
+
def get_condition(
|
36 |
+
self, condition_type: str, raw_img: Union[Image.Image, torch.Tensor]
|
37 |
+
) -> Union[Image.Image, torch.Tensor]:
|
38 |
+
"""
|
39 |
+
Returns the condition image.
|
40 |
+
"""
|
41 |
+
if condition_type == "depth":
|
42 |
+
from transformers import pipeline
|
43 |
+
|
44 |
+
depth_pipe = pipeline(
|
45 |
+
task="depth-estimation",
|
46 |
+
model="LiheYoung/depth-anything-small-hf",
|
47 |
+
device="cuda",
|
48 |
+
)
|
49 |
+
source_image = raw_img.convert("RGB")
|
50 |
+
condition_img = depth_pipe(source_image)["depth"].convert("RGB")
|
51 |
+
return condition_img
|
52 |
+
elif condition_type == "canny":
|
53 |
+
img = np.array(raw_img)
|
54 |
+
edges = cv2.Canny(img, 100, 200)
|
55 |
+
edges = Image.fromarray(edges).convert("RGB")
|
56 |
+
return edges
|
57 |
+
elif condition_type == "subject":
|
58 |
+
return raw_img
|
59 |
+
elif condition_type == "coloring":
|
60 |
+
return raw_img.convert("L").convert("RGB")
|
61 |
+
elif condition_type == "deblurring":
|
62 |
+
condition_image = (
|
63 |
+
raw_img.convert("RGB")
|
64 |
+
.filter(ImageFilter.GaussianBlur(10))
|
65 |
+
.convert("RGB")
|
66 |
+
)
|
67 |
+
return condition_image
|
68 |
+
elif condition_type == "fill":
|
69 |
+
return raw_img.convert("RGB")
|
70 |
+
return self.condition
|
71 |
+
|
72 |
+
@property
|
73 |
+
def type_id(self) -> int:
|
74 |
+
"""
|
75 |
+
Returns the type id of the condition.
|
76 |
+
"""
|
77 |
+
return condition_dict[self.condition_type]
|
78 |
+
|
79 |
+
@classmethod
|
80 |
+
def get_type_id(cls, condition_type: str) -> int:
|
81 |
+
"""
|
82 |
+
Returns the type id of the condition.
|
83 |
+
"""
|
84 |
+
return condition_dict[condition_type]
|
85 |
+
|
86 |
+
def _encode_image(self, pipe: FluxPipeline, cond_img: Image.Image) -> torch.Tensor:
|
87 |
+
"""
|
88 |
+
Encodes an image condition into tokens using the pipeline.
|
89 |
+
"""
|
90 |
+
cond_img = pipe.image_processor.preprocess(cond_img)
|
91 |
+
cond_img = cond_img.to(pipe.device).to(pipe.dtype)
|
92 |
+
cond_img = pipe.vae.encode(cond_img).latent_dist.sample()
|
93 |
+
cond_img = (
|
94 |
+
cond_img - pipe.vae.config.shift_factor
|
95 |
+
) * pipe.vae.config.scaling_factor
|
96 |
+
cond_tokens = pipe._pack_latents(cond_img, *cond_img.shape)
|
97 |
+
cond_ids = pipe._prepare_latent_image_ids(
|
98 |
+
cond_img.shape[0],
|
99 |
+
cond_img.shape[2],
|
100 |
+
cond_img.shape[3],
|
101 |
+
pipe.device,
|
102 |
+
pipe.dtype,
|
103 |
+
)
|
104 |
+
return cond_tokens, cond_ids
|
105 |
+
|
106 |
+
def encode(self, pipe: FluxPipeline) -> Tuple[torch.Tensor, torch.Tensor, int]:
|
107 |
+
"""
|
108 |
+
Encodes the condition into tokens, ids and type_id.
|
109 |
+
"""
|
110 |
+
if self.condition_type in [
|
111 |
+
"depth",
|
112 |
+
"canny",
|
113 |
+
"subject",
|
114 |
+
"coloring",
|
115 |
+
"deblurring",
|
116 |
+
"fill",
|
117 |
+
]:
|
118 |
+
tokens, ids = self._encode_image(pipe, self.condition)
|
119 |
+
else:
|
120 |
+
raise NotImplementedError(
|
121 |
+
f"Condition type {self.condition_type} not implemented"
|
122 |
+
)
|
123 |
+
type_id = torch.ones_like(ids[:, :1]) * self.type_id
|
124 |
+
return tokens, ids, type_id
|
src/generate.py
ADDED
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import yaml, os
|
3 |
+
from diffusers.pipelines import FluxPipeline
|
4 |
+
from typing import List, Union, Optional, Dict, Any, Callable
|
5 |
+
from .transformer import tranformer_forward
|
6 |
+
from .condition import Condition
|
7 |
+
|
8 |
+
from diffusers.pipelines.flux.pipeline_flux import (
|
9 |
+
FluxPipelineOutput,
|
10 |
+
calculate_shift,
|
11 |
+
retrieve_timesteps,
|
12 |
+
np,
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
def prepare_params(
|
17 |
+
prompt: Union[str, List[str]] = None,
|
18 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
19 |
+
height: Optional[int] = 512,
|
20 |
+
width: Optional[int] = 512,
|
21 |
+
num_inference_steps: int = 28,
|
22 |
+
timesteps: List[int] = None,
|
23 |
+
guidance_scale: float = 3.5,
|
24 |
+
num_images_per_prompt: Optional[int] = 1,
|
25 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
26 |
+
latents: Optional[torch.FloatTensor] = None,
|
27 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
28 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
29 |
+
output_type: Optional[str] = "pil",
|
30 |
+
return_dict: bool = True,
|
31 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
32 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
33 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
34 |
+
max_sequence_length: int = 512,
|
35 |
+
**kwargs: dict,
|
36 |
+
):
|
37 |
+
return (
|
38 |
+
prompt,
|
39 |
+
prompt_2,
|
40 |
+
height,
|
41 |
+
width,
|
42 |
+
num_inference_steps,
|
43 |
+
timesteps,
|
44 |
+
guidance_scale,
|
45 |
+
num_images_per_prompt,
|
46 |
+
generator,
|
47 |
+
latents,
|
48 |
+
prompt_embeds,
|
49 |
+
pooled_prompt_embeds,
|
50 |
+
output_type,
|
51 |
+
return_dict,
|
52 |
+
joint_attention_kwargs,
|
53 |
+
callback_on_step_end,
|
54 |
+
callback_on_step_end_tensor_inputs,
|
55 |
+
max_sequence_length,
|
56 |
+
)
|
57 |
+
|
58 |
+
|
59 |
+
def seed_everything(seed: int = 42):
|
60 |
+
torch.backends.cudnn.deterministic = True
|
61 |
+
torch.manual_seed(seed)
|
62 |
+
np.random.seed(seed)
|
63 |
+
|
64 |
+
|
65 |
+
@torch.no_grad()
|
66 |
+
def generate(
|
67 |
+
pipeline: FluxPipeline,
|
68 |
+
conditions: List[Condition] = None,
|
69 |
+
model_config: Optional[Dict[str, Any]] = {},
|
70 |
+
condition_scale: float = 1.0,
|
71 |
+
**params: dict,
|
72 |
+
):
|
73 |
+
# model_config = model_config or get_config(config_path).get("model", {})
|
74 |
+
if condition_scale != 1:
|
75 |
+
for name, module in pipeline.transformer.named_modules():
|
76 |
+
if not name.endswith(".attn"):
|
77 |
+
continue
|
78 |
+
module.c_factor = torch.ones(1, 1) * condition_scale
|
79 |
+
|
80 |
+
self = pipeline
|
81 |
+
(
|
82 |
+
prompt,
|
83 |
+
prompt_2,
|
84 |
+
height,
|
85 |
+
width,
|
86 |
+
num_inference_steps,
|
87 |
+
timesteps,
|
88 |
+
guidance_scale,
|
89 |
+
num_images_per_prompt,
|
90 |
+
generator,
|
91 |
+
latents,
|
92 |
+
prompt_embeds,
|
93 |
+
pooled_prompt_embeds,
|
94 |
+
output_type,
|
95 |
+
return_dict,
|
96 |
+
joint_attention_kwargs,
|
97 |
+
callback_on_step_end,
|
98 |
+
callback_on_step_end_tensor_inputs,
|
99 |
+
max_sequence_length,
|
100 |
+
) = prepare_params(**params)
|
101 |
+
|
102 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
103 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
104 |
+
|
105 |
+
# 1. Check inputs. Raise error if not correct
|
106 |
+
self.check_inputs(
|
107 |
+
prompt,
|
108 |
+
prompt_2,
|
109 |
+
height,
|
110 |
+
width,
|
111 |
+
prompt_embeds=prompt_embeds,
|
112 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
113 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
114 |
+
max_sequence_length=max_sequence_length,
|
115 |
+
)
|
116 |
+
|
117 |
+
self._guidance_scale = guidance_scale
|
118 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
119 |
+
self._interrupt = False
|
120 |
+
|
121 |
+
# 2. Define call parameters
|
122 |
+
if prompt is not None and isinstance(prompt, str):
|
123 |
+
batch_size = 1
|
124 |
+
elif prompt is not None and isinstance(prompt, list):
|
125 |
+
batch_size = len(prompt)
|
126 |
+
else:
|
127 |
+
batch_size = prompt_embeds.shape[0]
|
128 |
+
|
129 |
+
device = self._execution_device
|
130 |
+
|
131 |
+
lora_scale = (
|
132 |
+
self.joint_attention_kwargs.get("scale", None)
|
133 |
+
if self.joint_attention_kwargs is not None
|
134 |
+
else None
|
135 |
+
)
|
136 |
+
(
|
137 |
+
prompt_embeds,
|
138 |
+
pooled_prompt_embeds,
|
139 |
+
text_ids,
|
140 |
+
) = self.encode_prompt(
|
141 |
+
prompt=prompt,
|
142 |
+
prompt_2=prompt_2,
|
143 |
+
prompt_embeds=prompt_embeds,
|
144 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
145 |
+
device=device,
|
146 |
+
num_images_per_prompt=num_images_per_prompt,
|
147 |
+
max_sequence_length=max_sequence_length,
|
148 |
+
lora_scale=lora_scale,
|
149 |
+
)
|
150 |
+
|
151 |
+
# 4. Prepare latent variables
|
152 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
153 |
+
latents, latent_image_ids = self.prepare_latents(
|
154 |
+
batch_size * num_images_per_prompt,
|
155 |
+
num_channels_latents,
|
156 |
+
height,
|
157 |
+
width,
|
158 |
+
prompt_embeds.dtype,
|
159 |
+
device,
|
160 |
+
generator,
|
161 |
+
latents,
|
162 |
+
)
|
163 |
+
|
164 |
+
# 4.1. Prepare conditions
|
165 |
+
condition_latents, condition_ids, condition_type_ids = ([] for _ in range(3))
|
166 |
+
use_condition = conditions is not None or []
|
167 |
+
if use_condition:
|
168 |
+
assert len(conditions) <= 1, "Only one condition is supported for now."
|
169 |
+
pipeline.set_adapters(conditions[0].condition_type)
|
170 |
+
for condition in conditions:
|
171 |
+
tokens, ids, type_id = condition.encode(self)
|
172 |
+
condition_latents.append(tokens) # [batch_size, token_n, token_dim]
|
173 |
+
condition_ids.append(ids) # [token_n, id_dim(3)]
|
174 |
+
condition_type_ids.append(type_id) # [token_n, 1]
|
175 |
+
condition_latents = torch.cat(condition_latents, dim=1)
|
176 |
+
condition_ids = torch.cat(condition_ids, dim=0)
|
177 |
+
if condition.condition_type == "subject":
|
178 |
+
condition_ids[:, 2] += width // 16
|
179 |
+
condition_type_ids = torch.cat(condition_type_ids, dim=0)
|
180 |
+
|
181 |
+
# 5. Prepare timesteps
|
182 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
183 |
+
image_seq_len = latents.shape[1]
|
184 |
+
mu = calculate_shift(
|
185 |
+
image_seq_len,
|
186 |
+
self.scheduler.config.base_image_seq_len,
|
187 |
+
self.scheduler.config.max_image_seq_len,
|
188 |
+
self.scheduler.config.base_shift,
|
189 |
+
self.scheduler.config.max_shift,
|
190 |
+
)
|
191 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
192 |
+
self.scheduler,
|
193 |
+
num_inference_steps,
|
194 |
+
device,
|
195 |
+
timesteps,
|
196 |
+
sigmas,
|
197 |
+
mu=mu,
|
198 |
+
)
|
199 |
+
num_warmup_steps = max(
|
200 |
+
len(timesteps) - num_inference_steps * self.scheduler.order, 0
|
201 |
+
)
|
202 |
+
self._num_timesteps = len(timesteps)
|
203 |
+
|
204 |
+
# 6. Denoising loop
|
205 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
206 |
+
for i, t in enumerate(timesteps):
|
207 |
+
if self.interrupt:
|
208 |
+
continue
|
209 |
+
|
210 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
211 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
212 |
+
|
213 |
+
# handle guidance
|
214 |
+
if self.transformer.config.guidance_embeds:
|
215 |
+
guidance = torch.tensor([guidance_scale], device=device)
|
216 |
+
guidance = guidance.expand(latents.shape[0])
|
217 |
+
else:
|
218 |
+
guidance = None
|
219 |
+
noise_pred = tranformer_forward(
|
220 |
+
self.transformer,
|
221 |
+
model_config=model_config,
|
222 |
+
# Inputs of the condition (new feature)
|
223 |
+
condition_latents=condition_latents if use_condition else None,
|
224 |
+
condition_ids=condition_ids if use_condition else None,
|
225 |
+
condition_type_ids=condition_type_ids if use_condition else None,
|
226 |
+
# Inputs to the original transformer
|
227 |
+
hidden_states=latents,
|
228 |
+
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
|
229 |
+
timestep=timestep / 1000,
|
230 |
+
guidance=guidance,
|
231 |
+
pooled_projections=pooled_prompt_embeds,
|
232 |
+
encoder_hidden_states=prompt_embeds,
|
233 |
+
txt_ids=text_ids,
|
234 |
+
img_ids=latent_image_ids,
|
235 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
236 |
+
return_dict=False,
|
237 |
+
)[0]
|
238 |
+
|
239 |
+
# compute the previous noisy sample x_t -> x_t-1
|
240 |
+
latents_dtype = latents.dtype
|
241 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
242 |
+
|
243 |
+
if latents.dtype != latents_dtype:
|
244 |
+
if torch.backends.mps.is_available():
|
245 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
246 |
+
latents = latents.to(latents_dtype)
|
247 |
+
|
248 |
+
if callback_on_step_end is not None:
|
249 |
+
callback_kwargs = {}
|
250 |
+
for k in callback_on_step_end_tensor_inputs:
|
251 |
+
callback_kwargs[k] = locals()[k]
|
252 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
253 |
+
|
254 |
+
latents = callback_outputs.pop("latents", latents)
|
255 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
256 |
+
|
257 |
+
# call the callback, if provided
|
258 |
+
if i == len(timesteps) - 1 or (
|
259 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
260 |
+
):
|
261 |
+
progress_bar.update()
|
262 |
+
|
263 |
+
if output_type == "latent":
|
264 |
+
image = latents
|
265 |
+
|
266 |
+
else:
|
267 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
268 |
+
latents = (
|
269 |
+
latents / self.vae.config.scaling_factor
|
270 |
+
) + self.vae.config.shift_factor
|
271 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
272 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
273 |
+
|
274 |
+
# Offload all models
|
275 |
+
self.maybe_free_model_hooks()
|
276 |
+
|
277 |
+
if condition_scale != 1:
|
278 |
+
for name, module in pipeline.transformer.named_modules():
|
279 |
+
if not name.endswith(".attn"):
|
280 |
+
continue
|
281 |
+
del module.c_factor
|
282 |
+
|
283 |
+
if not return_dict:
|
284 |
+
return (image,)
|
285 |
+
|
286 |
+
return FluxPipelineOutput(images=image)
|
src/lora_controller.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
2 |
+
from typing import List, Any, Optional, Type
|
3 |
+
|
4 |
+
|
5 |
+
class enable_lora:
|
6 |
+
def __init__(self, lora_modules: List[BaseTunerLayer], activated: bool) -> None:
|
7 |
+
self.activated: bool = activated
|
8 |
+
if activated:
|
9 |
+
return
|
10 |
+
self.lora_modules: List[BaseTunerLayer] = [
|
11 |
+
each for each in lora_modules if isinstance(each, BaseTunerLayer)
|
12 |
+
]
|
13 |
+
self.scales = [
|
14 |
+
{
|
15 |
+
active_adapter: lora_module.scaling[active_adapter]
|
16 |
+
for active_adapter in lora_module.active_adapters
|
17 |
+
}
|
18 |
+
for lora_module in self.lora_modules
|
19 |
+
]
|
20 |
+
|
21 |
+
def __enter__(self) -> None:
|
22 |
+
if self.activated:
|
23 |
+
return
|
24 |
+
|
25 |
+
for lora_module in self.lora_modules:
|
26 |
+
if not isinstance(lora_module, BaseTunerLayer):
|
27 |
+
continue
|
28 |
+
lora_module.scale_layer(0)
|
29 |
+
|
30 |
+
def __exit__(
|
31 |
+
self,
|
32 |
+
exc_type: Optional[Type[BaseException]],
|
33 |
+
exc_val: Optional[BaseException],
|
34 |
+
exc_tb: Optional[Any],
|
35 |
+
) -> None:
|
36 |
+
if self.activated:
|
37 |
+
return
|
38 |
+
for i, lora_module in enumerate(self.lora_modules):
|
39 |
+
if not isinstance(lora_module, BaseTunerLayer):
|
40 |
+
continue
|
41 |
+
for active_adapter in lora_module.active_adapters:
|
42 |
+
lora_module.scaling[active_adapter] = self.scales[i][active_adapter]
|
43 |
+
|
44 |
+
|
45 |
+
class set_lora_scale:
|
46 |
+
def __init__(self, lora_modules: List[BaseTunerLayer], scale: float) -> None:
|
47 |
+
self.lora_modules: List[BaseTunerLayer] = [
|
48 |
+
each for each in lora_modules if isinstance(each, BaseTunerLayer)
|
49 |
+
]
|
50 |
+
self.scales = [
|
51 |
+
{
|
52 |
+
active_adapter: lora_module.scaling[active_adapter]
|
53 |
+
for active_adapter in lora_module.active_adapters
|
54 |
+
}
|
55 |
+
for lora_module in self.lora_modules
|
56 |
+
]
|
57 |
+
self.scale = scale
|
58 |
+
|
59 |
+
def __enter__(self) -> None:
|
60 |
+
for lora_module in self.lora_modules:
|
61 |
+
if not isinstance(lora_module, BaseTunerLayer):
|
62 |
+
continue
|
63 |
+
lora_module.scale_layer(self.scale)
|
64 |
+
|
65 |
+
def __exit__(
|
66 |
+
self,
|
67 |
+
exc_type: Optional[Type[BaseException]],
|
68 |
+
exc_val: Optional[BaseException],
|
69 |
+
exc_tb: Optional[Any],
|
70 |
+
) -> None:
|
71 |
+
for i, lora_module in enumerate(self.lora_modules):
|
72 |
+
if not isinstance(lora_module, BaseTunerLayer):
|
73 |
+
continue
|
74 |
+
for active_adapter in lora_module.active_adapters:
|
75 |
+
lora_module.scaling[active_adapter] = self.scales[i][active_adapter]
|
src/transformer.py
ADDED
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from diffusers.pipelines import FluxPipeline
|
3 |
+
from typing import List, Union, Optional, Dict, Any, Callable
|
4 |
+
from .block import block_forward, single_block_forward
|
5 |
+
from .lora_controller import enable_lora
|
6 |
+
from diffusers.models.transformers.transformer_flux import (
|
7 |
+
FluxTransformer2DModel,
|
8 |
+
Transformer2DModelOutput,
|
9 |
+
USE_PEFT_BACKEND,
|
10 |
+
is_torch_version,
|
11 |
+
scale_lora_layers,
|
12 |
+
unscale_lora_layers,
|
13 |
+
logger,
|
14 |
+
)
|
15 |
+
import numpy as np
|
16 |
+
|
17 |
+
|
18 |
+
def prepare_params(
|
19 |
+
hidden_states: torch.Tensor,
|
20 |
+
encoder_hidden_states: torch.Tensor = None,
|
21 |
+
pooled_projections: torch.Tensor = None,
|
22 |
+
timestep: torch.LongTensor = None,
|
23 |
+
img_ids: torch.Tensor = None,
|
24 |
+
txt_ids: torch.Tensor = None,
|
25 |
+
guidance: torch.Tensor = None,
|
26 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
27 |
+
controlnet_block_samples=None,
|
28 |
+
controlnet_single_block_samples=None,
|
29 |
+
return_dict: bool = True,
|
30 |
+
**kwargs: dict,
|
31 |
+
):
|
32 |
+
return (
|
33 |
+
hidden_states,
|
34 |
+
encoder_hidden_states,
|
35 |
+
pooled_projections,
|
36 |
+
timestep,
|
37 |
+
img_ids,
|
38 |
+
txt_ids,
|
39 |
+
guidance,
|
40 |
+
joint_attention_kwargs,
|
41 |
+
controlnet_block_samples,
|
42 |
+
controlnet_single_block_samples,
|
43 |
+
return_dict,
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
+
def tranformer_forward(
|
48 |
+
transformer: FluxTransformer2DModel,
|
49 |
+
condition_latents: torch.Tensor,
|
50 |
+
condition_ids: torch.Tensor,
|
51 |
+
condition_type_ids: torch.Tensor,
|
52 |
+
model_config: Optional[Dict[str, Any]] = {},
|
53 |
+
return_conditional_latents: bool = False,
|
54 |
+
c_t=0,
|
55 |
+
**params: dict,
|
56 |
+
):
|
57 |
+
self = transformer
|
58 |
+
use_condition = condition_latents is not None
|
59 |
+
use_condition_in_single_blocks = model_config.get(
|
60 |
+
"use_condition_in_single_blocks", True
|
61 |
+
)
|
62 |
+
# if return_conditional_latents is True, use_condition and use_condition_in_single_blocks must be True
|
63 |
+
assert not return_conditional_latents or (
|
64 |
+
use_condition and use_condition_in_single_blocks
|
65 |
+
), "`return_conditional_latents` is True, `use_condition` and `use_condition_in_single_blocks` must be True"
|
66 |
+
|
67 |
+
(
|
68 |
+
hidden_states,
|
69 |
+
encoder_hidden_states,
|
70 |
+
pooled_projections,
|
71 |
+
timestep,
|
72 |
+
img_ids,
|
73 |
+
txt_ids,
|
74 |
+
guidance,
|
75 |
+
joint_attention_kwargs,
|
76 |
+
controlnet_block_samples,
|
77 |
+
controlnet_single_block_samples,
|
78 |
+
return_dict,
|
79 |
+
) = prepare_params(**params)
|
80 |
+
|
81 |
+
if joint_attention_kwargs is not None:
|
82 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
83 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
84 |
+
else:
|
85 |
+
lora_scale = 1.0
|
86 |
+
|
87 |
+
if USE_PEFT_BACKEND:
|
88 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
89 |
+
scale_lora_layers(self, lora_scale)
|
90 |
+
else:
|
91 |
+
if (
|
92 |
+
joint_attention_kwargs is not None
|
93 |
+
and joint_attention_kwargs.get("scale", None) is not None
|
94 |
+
):
|
95 |
+
logger.warning(
|
96 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
97 |
+
)
|
98 |
+
with enable_lora((self.x_embedder,), model_config.get("latent_lora", False)):
|
99 |
+
hidden_states = self.x_embedder(hidden_states)
|
100 |
+
condition_latents = self.x_embedder(condition_latents) if use_condition else None
|
101 |
+
|
102 |
+
timestep = timestep.to(hidden_states.dtype) * 1000
|
103 |
+
if guidance is not None:
|
104 |
+
guidance = guidance.to(hidden_states.dtype) * 1000
|
105 |
+
else:
|
106 |
+
guidance = None
|
107 |
+
temb = (
|
108 |
+
self.time_text_embed(timestep, pooled_projections)
|
109 |
+
if guidance is None
|
110 |
+
else self.time_text_embed(timestep, guidance, pooled_projections)
|
111 |
+
)
|
112 |
+
cond_temb = (
|
113 |
+
self.time_text_embed(torch.ones_like(timestep) * c_t * 1000, pooled_projections)
|
114 |
+
if guidance is None
|
115 |
+
else self.time_text_embed(
|
116 |
+
torch.ones_like(timestep) * c_t * 1000, guidance, pooled_projections
|
117 |
+
)
|
118 |
+
)
|
119 |
+
if hasattr(self, "cond_type_embed") and condition_type_ids is not None:
|
120 |
+
cond_type_proj = self.time_text_embed.time_proj(condition_type_ids[0])
|
121 |
+
cond_type_emb = self.cond_type_embed(cond_type_proj.to(dtype=cond_temb.dtype))
|
122 |
+
cond_temb = cond_temb + cond_type_emb
|
123 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
124 |
+
|
125 |
+
if txt_ids.ndim == 3:
|
126 |
+
logger.warning(
|
127 |
+
"Passing `txt_ids` 3d torch.Tensor is deprecated."
|
128 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
129 |
+
)
|
130 |
+
txt_ids = txt_ids[0]
|
131 |
+
if img_ids.ndim == 3:
|
132 |
+
logger.warning(
|
133 |
+
"Passing `img_ids` 3d torch.Tensor is deprecated."
|
134 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
135 |
+
)
|
136 |
+
img_ids = img_ids[0]
|
137 |
+
|
138 |
+
ids = torch.cat((txt_ids, img_ids), dim=0)
|
139 |
+
image_rotary_emb = self.pos_embed(ids)
|
140 |
+
if use_condition:
|
141 |
+
cond_ids = condition_ids
|
142 |
+
cond_rotary_emb = self.pos_embed(cond_ids)
|
143 |
+
|
144 |
+
# hidden_states = torch.cat([hidden_states, condition_latents], dim=1)
|
145 |
+
|
146 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
147 |
+
if self.training and self.gradient_checkpointing:
|
148 |
+
|
149 |
+
def create_custom_forward(module, return_dict=None):
|
150 |
+
def custom_forward(*inputs):
|
151 |
+
if return_dict is not None:
|
152 |
+
return module(*inputs, return_dict=return_dict)
|
153 |
+
else:
|
154 |
+
return module(*inputs)
|
155 |
+
|
156 |
+
return custom_forward
|
157 |
+
|
158 |
+
ckpt_kwargs: Dict[str, Any] = (
|
159 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
160 |
+
)
|
161 |
+
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
|
162 |
+
create_custom_forward(block),
|
163 |
+
hidden_states,
|
164 |
+
encoder_hidden_states,
|
165 |
+
temb,
|
166 |
+
image_rotary_emb,
|
167 |
+
**ckpt_kwargs,
|
168 |
+
)
|
169 |
+
|
170 |
+
else:
|
171 |
+
encoder_hidden_states, hidden_states, condition_latents = block_forward(
|
172 |
+
block,
|
173 |
+
model_config=model_config,
|
174 |
+
hidden_states=hidden_states,
|
175 |
+
encoder_hidden_states=encoder_hidden_states,
|
176 |
+
condition_latents=condition_latents if use_condition else None,
|
177 |
+
temb=temb,
|
178 |
+
cond_temb=cond_temb if use_condition else None,
|
179 |
+
cond_rotary_emb=cond_rotary_emb if use_condition else None,
|
180 |
+
image_rotary_emb=image_rotary_emb,
|
181 |
+
)
|
182 |
+
|
183 |
+
# controlnet residual
|
184 |
+
if controlnet_block_samples is not None:
|
185 |
+
interval_control = len(self.transformer_blocks) / len(
|
186 |
+
controlnet_block_samples
|
187 |
+
)
|
188 |
+
interval_control = int(np.ceil(interval_control))
|
189 |
+
hidden_states = (
|
190 |
+
hidden_states
|
191 |
+
+ controlnet_block_samples[index_block // interval_control]
|
192 |
+
)
|
193 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
194 |
+
|
195 |
+
for index_block, block in enumerate(self.single_transformer_blocks):
|
196 |
+
if self.training and self.gradient_checkpointing:
|
197 |
+
|
198 |
+
def create_custom_forward(module, return_dict=None):
|
199 |
+
def custom_forward(*inputs):
|
200 |
+
if return_dict is not None:
|
201 |
+
return module(*inputs, return_dict=return_dict)
|
202 |
+
else:
|
203 |
+
return module(*inputs)
|
204 |
+
|
205 |
+
return custom_forward
|
206 |
+
|
207 |
+
ckpt_kwargs: Dict[str, Any] = (
|
208 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
209 |
+
)
|
210 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
211 |
+
create_custom_forward(block),
|
212 |
+
hidden_states,
|
213 |
+
temb,
|
214 |
+
image_rotary_emb,
|
215 |
+
**ckpt_kwargs,
|
216 |
+
)
|
217 |
+
|
218 |
+
else:
|
219 |
+
result = single_block_forward(
|
220 |
+
block,
|
221 |
+
model_config=model_config,
|
222 |
+
hidden_states=hidden_states,
|
223 |
+
temb=temb,
|
224 |
+
image_rotary_emb=image_rotary_emb,
|
225 |
+
**(
|
226 |
+
{
|
227 |
+
"condition_latents": condition_latents,
|
228 |
+
"cond_temb": cond_temb,
|
229 |
+
"cond_rotary_emb": cond_rotary_emb,
|
230 |
+
}
|
231 |
+
if use_condition_in_single_blocks and use_condition
|
232 |
+
else {}
|
233 |
+
),
|
234 |
+
)
|
235 |
+
if use_condition_in_single_blocks and use_condition:
|
236 |
+
hidden_states, condition_latents = result
|
237 |
+
else:
|
238 |
+
hidden_states = result
|
239 |
+
|
240 |
+
# controlnet residual
|
241 |
+
if controlnet_single_block_samples is not None:
|
242 |
+
interval_control = len(self.single_transformer_blocks) / len(
|
243 |
+
controlnet_single_block_samples
|
244 |
+
)
|
245 |
+
interval_control = int(np.ceil(interval_control))
|
246 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
|
247 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
248 |
+
+ controlnet_single_block_samples[index_block // interval_control]
|
249 |
+
)
|
250 |
+
|
251 |
+
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
252 |
+
|
253 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
254 |
+
output = self.proj_out(hidden_states)
|
255 |
+
if return_conditional_latents:
|
256 |
+
condition_latents = (
|
257 |
+
self.norm_out(condition_latents, cond_temb) if use_condition else None
|
258 |
+
)
|
259 |
+
condition_output = self.proj_out(condition_latents) if use_condition else None
|
260 |
+
|
261 |
+
if USE_PEFT_BACKEND:
|
262 |
+
# remove `lora_scale` from each PEFT layer
|
263 |
+
unscale_lora_layers(self, lora_scale)
|
264 |
+
|
265 |
+
if not return_dict:
|
266 |
+
return (
|
267 |
+
(output,) if not return_conditional_latents else (output, condition_output)
|
268 |
+
)
|
269 |
+
|
270 |
+
return Transformer2DModelOutput(sample=output)
|