Initial commit
Browse files- Chatbot-Albatros.py +149 -0
- Procfile +1 -0
- requirements.txt +9 -0
Chatbot-Albatros.py
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
import json
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import fitz
|
| 5 |
+
import logging
|
| 6 |
+
import base64
|
| 7 |
+
from flask import Flask, request, jsonify
|
| 8 |
+
import io
|
| 9 |
+
import os
|
| 10 |
+
import base64
|
| 11 |
+
import io
|
| 12 |
+
from PyPDF2 import PdfReader
|
| 13 |
+
|
| 14 |
+
# Configuration du logger
|
| 15 |
+
logging.basicConfig(level=logging.ERROR)
|
| 16 |
+
logger = logging.getLogger(__name__)
|
| 17 |
+
|
| 18 |
+
app = Flask(__name__)
|
| 19 |
+
|
| 20 |
+
# Remplacez par votre clé API
|
| 21 |
+
OPENROUTER_API_KEY = "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"
|
| 22 |
+
YOUR_SITE_URL = "votre-site.com" # Remplacez par votre URL
|
| 23 |
+
YOUR_APP_NAME = "MonChatbot"
|
| 24 |
+
|
| 25 |
+
def extract_text_from_pdf(pdf_file):
|
| 26 |
+
doc = fitz.open(pdf_file)
|
| 27 |
+
text = ""
|
| 28 |
+
for page in doc:
|
| 29 |
+
text += page.get_text()
|
| 30 |
+
return text
|
| 31 |
+
|
| 32 |
+
def chatbot_response(message, history, pdf_text=None, image_path=None):
|
| 33 |
+
messages = [{"role": "system", "content": "Vous êtes un assistant IA utile et amical, capable d'analyser des images et du texte."}]
|
| 34 |
+
|
| 35 |
+
if pdf_text:
|
| 36 |
+
messages.append({"role": "system", "content": f"Le contenu du PDF est : {pdf_text}"})
|
| 37 |
+
|
| 38 |
+
for human, assistant in history:
|
| 39 |
+
messages.append({"role": "user", "content": human})
|
| 40 |
+
if assistant is not None:
|
| 41 |
+
messages.append({"role": "assistant", "content": assistant})
|
| 42 |
+
|
| 43 |
+
message_content = message
|
| 44 |
+
if image_path:
|
| 45 |
+
encoded_image = encode_image(image_path)
|
| 46 |
+
message_content = [
|
| 47 |
+
{"type": "text", "text": message},
|
| 48 |
+
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{encoded_image}"}}
|
| 49 |
+
]
|
| 50 |
+
|
| 51 |
+
messages.append({"role": "user", "content": message_content})
|
| 52 |
+
|
| 53 |
+
try:
|
| 54 |
+
response = requests.post(
|
| 55 |
+
url="https://openrouter.ai/api/v1/chat/completions",
|
| 56 |
+
headers={
|
| 57 |
+
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
|
| 58 |
+
"HTTP-Referer": f"{YOUR_SITE_URL}",
|
| 59 |
+
"X-Title": f"{YOUR_APP_NAME}",
|
| 60 |
+
"Content-Type": "application/json"
|
| 61 |
+
},
|
| 62 |
+
data=json.dumps({
|
| 63 |
+
"model": "mistralai/pixtral-12b:free",
|
| 64 |
+
"messages": messages
|
| 65 |
+
})
|
| 66 |
+
)
|
| 67 |
+
if response.status_code == 200:
|
| 68 |
+
data = response.json()
|
| 69 |
+
return data['choices'][0]['message']['content']
|
| 70 |
+
else:
|
| 71 |
+
return f"Erreur {response.status_code}: {response.text}"
|
| 72 |
+
except Exception as e:
|
| 73 |
+
logger.error(f"Erreur lors de l'appel API: {str(e)}")
|
| 74 |
+
return f"Erreur: {str(e)}"
|
| 75 |
+
|
| 76 |
+
@app.route('/api/chatbot', methods=['POST'])
|
| 77 |
+
def api_chatbot():
|
| 78 |
+
try:
|
| 79 |
+
# Récupérer le message et le contenu encodé en base64 du PDF
|
| 80 |
+
message = request.json.get('message')
|
| 81 |
+
pdf_base64 = request.json.get('pdf_content') # PDF encodé en base64
|
| 82 |
+
|
| 83 |
+
if not pdf_base64:
|
| 84 |
+
return jsonify({'error': 'Aucun contenu PDF reçu.'}), 400
|
| 85 |
+
|
| 86 |
+
# Décoder le contenu base64 en fichier PDF
|
| 87 |
+
pdf_data = base64.b64decode(pdf_base64)
|
| 88 |
+
pdf_file = io.BytesIO(pdf_data)
|
| 89 |
+
|
| 90 |
+
# Extraire le texte du PDF
|
| 91 |
+
pdf_reader = PdfReader(pdf_file)
|
| 92 |
+
pdf_text = ""
|
| 93 |
+
for page in pdf_reader.pages:
|
| 94 |
+
pdf_text += page.extract_text()
|
| 95 |
+
|
| 96 |
+
if not pdf_text:
|
| 97 |
+
return jsonify({'error': 'Impossible d\'extraire le texte du PDF.'}), 500
|
| 98 |
+
|
| 99 |
+
# Utiliser le texte extrait du PDF dans la réponse du chatbot
|
| 100 |
+
response = chatbot_response(message, history=[], pdf_text=pdf_text)
|
| 101 |
+
|
| 102 |
+
return jsonify({'response': response})
|
| 103 |
+
except Exception as e:
|
| 104 |
+
return jsonify({'error': str(e)}), 500
|
| 105 |
+
|
| 106 |
+
# Créer l'interface Gradio pour une utilisation normale
|
| 107 |
+
# Définir la fonction user
|
| 108 |
+
def user(user_message, history, pdf_text, image):
|
| 109 |
+
# Retourne un message vide et met à jour l'historique de la conversation
|
| 110 |
+
return "", history + [[user_message, None]], pdf_text, image
|
| 111 |
+
|
| 112 |
+
def bot(history, pdf_text, image):
|
| 113 |
+
if history:
|
| 114 |
+
# Le dernier message utilisateur est passé à la fonction chatbot_response
|
| 115 |
+
bot_message = chatbot_response(history[-1][0], history[:-1], pdf_text, image)
|
| 116 |
+
history[-1][1] = bot_message # Mettre à jour l'historique avec la réponse du bot
|
| 117 |
+
return history
|
| 118 |
+
return []
|
| 119 |
+
|
| 120 |
+
def clear_chat():
|
| 121 |
+
return [], None, None
|
| 122 |
+
|
| 123 |
+
# Interface Gradio
|
| 124 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 125 |
+
chatbot = gr.Chatbot(label="Historique de la conversation")
|
| 126 |
+
msg = gr.Textbox(label="Votre message", placeholder="Tapez votre message ici...")
|
| 127 |
+
pdf_upload = gr.File(label="Téléchargez un fichier PDF", file_types=[".pdf"])
|
| 128 |
+
image_upload = gr.Image(type="filepath", label="Téléchargez une image")
|
| 129 |
+
clear = gr.Button("Effacer la conversation")
|
| 130 |
+
pdf_text = gr.State()
|
| 131 |
+
|
| 132 |
+
# Lorsqu'un fichier PDF est uploadé, extrait le texte du PDF
|
| 133 |
+
pdf_upload.change(lambda file: extract_text_from_pdf(file), pdf_upload, pdf_text)
|
| 134 |
+
|
| 135 |
+
# Lorsqu'un message est envoyé, met à jour le chatbot
|
| 136 |
+
msg.submit(user, [msg, chatbot, pdf_text, image_upload], [msg, chatbot, pdf_text, image_upload], queue=False).then(
|
| 137 |
+
bot, [chatbot, pdf_text, image_upload], chatbot
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
# Efface la conversation
|
| 141 |
+
clear.click(clear_chat, None, [chatbot, pdf_text, image_upload], queue=False)
|
| 142 |
+
|
| 143 |
+
demo.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 5000)))
|
| 144 |
+
|
| 145 |
+
# Lancer l'application Flask pour la gestion des API
|
| 146 |
+
|
| 147 |
+
if __name__ == "__main__":
|
| 148 |
+
port = int(os.environ.get("PORT", 5000)) # Utilise le port fourni par Heroku
|
| 149 |
+
app.run(host="0.0.0.0", port=port) # Assure-toi que Flask/Gradio écoute sur 0.0.0.0
|
Procfile
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
web: python Chatbot-Albatros.py
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
requests==2.31.0
|
| 2 |
+
gradio==4.44.1
|
| 3 |
+
PyMuPDF==1.24.10
|
| 4 |
+
Flask==3.0.3
|
| 5 |
+
gunicorn
|
| 6 |
+
PyPDF2==3.0.1
|
| 7 |
+
logging
|
| 8 |
+
base64
|
| 9 |
+
|