Spaces:
Build error
Build error
| # AuraSR: GAN-based Super-Resolution for real-world, a reproduction of the GigaGAN* paper. Implementation is | |
| # based on the unofficial lucidrains/gigagan-pytorch repository. Heavily modified from there. | |
| # | |
| # https://mingukkang.github.io/GigaGAN/ | |
| from math import log2, ceil | |
| from functools import partial | |
| from typing import Any, Optional, List, Iterable | |
| import torch | |
| from torchvision import transforms | |
| from PIL import Image | |
| from torch import nn, einsum, Tensor | |
| import torch.nn.functional as F | |
| from einops import rearrange, repeat, reduce | |
| from einops.layers.torch import Rearrange | |
| from torchvision.utils import save_image | |
| import math | |
| def get_same_padding(size, kernel, dilation, stride): | |
| return ((size - 1) * (stride - 1) + dilation * (kernel - 1)) // 2 | |
| class AdaptiveConv2DMod(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| dim_out, | |
| kernel, | |
| *, | |
| demod=True, | |
| stride=1, | |
| dilation=1, | |
| eps=1e-8, | |
| num_conv_kernels=1, # set this to be greater than 1 for adaptive | |
| ): | |
| super().__init__() | |
| self.eps = eps | |
| self.dim_out = dim_out | |
| self.kernel = kernel | |
| self.stride = stride | |
| self.dilation = dilation | |
| self.adaptive = num_conv_kernels > 1 | |
| self.weights = nn.Parameter( | |
| torch.randn((num_conv_kernels, dim_out, dim, kernel, kernel)) | |
| ) | |
| self.demod = demod | |
| nn.init.kaiming_normal_( | |
| self.weights, a=0, mode="fan_in", nonlinearity="leaky_relu" | |
| ) | |
| def forward( | |
| self, fmap, mod: Optional[Tensor] = None, kernel_mod: Optional[Tensor] = None | |
| ): | |
| """ | |
| notation | |
| b - batch | |
| n - convs | |
| o - output | |
| i - input | |
| k - kernel | |
| """ | |
| b, h = fmap.shape[0], fmap.shape[-2] | |
| # account for feature map that has been expanded by the scale in the first dimension | |
| # due to multiscale inputs and outputs | |
| if mod.shape[0] != b: | |
| mod = repeat(mod, "b ... -> (s b) ...", s=b // mod.shape[0]) | |
| if exists(kernel_mod): | |
| kernel_mod_has_el = kernel_mod.numel() > 0 | |
| assert self.adaptive or not kernel_mod_has_el | |
| if kernel_mod_has_el and kernel_mod.shape[0] != b: | |
| kernel_mod = repeat( | |
| kernel_mod, "b ... -> (s b) ...", s=b // kernel_mod.shape[0] | |
| ) | |
| # prepare weights for modulation | |
| weights = self.weights | |
| if self.adaptive: | |
| weights = repeat(weights, "... -> b ...", b=b) | |
| # determine an adaptive weight and 'select' the kernel to use with softmax | |
| assert exists(kernel_mod) and kernel_mod.numel() > 0 | |
| kernel_attn = kernel_mod.softmax(dim=-1) | |
| kernel_attn = rearrange(kernel_attn, "b n -> b n 1 1 1 1") | |
| weights = reduce(weights * kernel_attn, "b n ... -> b ...", "sum") | |
| # do the modulation, demodulation, as done in stylegan2 | |
| mod = rearrange(mod, "b i -> b 1 i 1 1") | |
| weights = weights * (mod + 1) | |
| if self.demod: | |
| inv_norm = ( | |
| reduce(weights**2, "b o i k1 k2 -> b o 1 1 1", "sum") | |
| .clamp(min=self.eps) | |
| .rsqrt() | |
| ) | |
| weights = weights * inv_norm | |
| fmap = rearrange(fmap, "b c h w -> 1 (b c) h w") | |
| weights = rearrange(weights, "b o ... -> (b o) ...") | |
| padding = get_same_padding(h, self.kernel, self.dilation, self.stride) | |
| fmap = F.conv2d(fmap, weights, padding=padding, groups=b) | |
| return rearrange(fmap, "1 (b o) ... -> b o ...", b=b) | |
| class Attend(nn.Module): | |
| def __init__(self, dropout=0.0, flash=False): | |
| super().__init__() | |
| self.dropout = dropout | |
| self.attn_dropout = nn.Dropout(dropout) | |
| self.scale = nn.Parameter(torch.randn(1)) | |
| self.flash = flash | |
| def flash_attn(self, q, k, v): | |
| q, k, v = map(lambda t: t.contiguous(), (q, k, v)) | |
| out = F.scaled_dot_product_attention( | |
| q, k, v, dropout_p=self.dropout if self.training else 0.0 | |
| ) | |
| return out | |
| def forward(self, q, k, v): | |
| if self.flash: | |
| return self.flash_attn(q, k, v) | |
| scale = q.shape[-1] ** -0.5 | |
| # similarity | |
| sim = einsum("b h i d, b h j d -> b h i j", q, k) * scale | |
| # attention | |
| attn = sim.softmax(dim=-1) | |
| attn = self.attn_dropout(attn) | |
| # aggregate values | |
| out = einsum("b h i j, b h j d -> b h i d", attn, v) | |
| return out | |
| def exists(x): | |
| return x is not None | |
| def default(val, d): | |
| if exists(val): | |
| return val | |
| return d() if callable(d) else d | |
| def cast_tuple(t, length=1): | |
| if isinstance(t, tuple): | |
| return t | |
| return (t,) * length | |
| def identity(t, *args, **kwargs): | |
| return t | |
| def is_power_of_two(n): | |
| return log2(n).is_integer() | |
| def null_iterator(): | |
| while True: | |
| yield None | |
| def Downsample(dim, dim_out=None): | |
| return nn.Sequential( | |
| Rearrange("b c (h p1) (w p2) -> b (c p1 p2) h w", p1=2, p2=2), | |
| nn.Conv2d(dim * 4, default(dim_out, dim), 1), | |
| ) | |
| class RMSNorm(nn.Module): | |
| def __init__(self, dim): | |
| super().__init__() | |
| self.g = nn.Parameter(torch.ones(1, dim, 1, 1)) | |
| self.eps = 1e-4 | |
| def forward(self, x): | |
| return F.normalize(x, dim=1) * self.g * (x.shape[1] ** 0.5) | |
| # building block modules | |
| class Block(nn.Module): | |
| def __init__(self, dim, dim_out, groups=8, num_conv_kernels=0): | |
| super().__init__() | |
| self.proj = AdaptiveConv2DMod( | |
| dim, dim_out, kernel=3, num_conv_kernels=num_conv_kernels | |
| ) | |
| self.kernel = 3 | |
| self.dilation = 1 | |
| self.stride = 1 | |
| self.act = nn.SiLU() | |
| def forward(self, x, conv_mods_iter: Optional[Iterable] = None): | |
| conv_mods_iter = default(conv_mods_iter, null_iterator()) | |
| x = self.proj(x, mod=next(conv_mods_iter), kernel_mod=next(conv_mods_iter)) | |
| x = self.act(x) | |
| return x | |
| class ResnetBlock(nn.Module): | |
| def __init__( | |
| self, dim, dim_out, *, groups=8, num_conv_kernels=0, style_dims: List = [] | |
| ): | |
| super().__init__() | |
| style_dims.extend([dim, num_conv_kernels, dim_out, num_conv_kernels]) | |
| self.block1 = Block( | |
| dim, dim_out, groups=groups, num_conv_kernels=num_conv_kernels | |
| ) | |
| self.block2 = Block( | |
| dim_out, dim_out, groups=groups, num_conv_kernels=num_conv_kernels | |
| ) | |
| self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity() | |
| def forward(self, x, conv_mods_iter: Optional[Iterable] = None): | |
| h = self.block1(x, conv_mods_iter=conv_mods_iter) | |
| h = self.block2(h, conv_mods_iter=conv_mods_iter) | |
| return h + self.res_conv(x) | |
| class LinearAttention(nn.Module): | |
| def __init__(self, dim, heads=4, dim_head=32): | |
| super().__init__() | |
| self.scale = dim_head**-0.5 | |
| self.heads = heads | |
| hidden_dim = dim_head * heads | |
| self.norm = RMSNorm(dim) | |
| self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False) | |
| self.to_out = nn.Sequential(nn.Conv2d(hidden_dim, dim, 1), RMSNorm(dim)) | |
| def forward(self, x): | |
| b, c, h, w = x.shape | |
| x = self.norm(x) | |
| qkv = self.to_qkv(x).chunk(3, dim=1) | |
| q, k, v = map( | |
| lambda t: rearrange(t, "b (h c) x y -> b h c (x y)", h=self.heads), qkv | |
| ) | |
| q = q.softmax(dim=-2) | |
| k = k.softmax(dim=-1) | |
| q = q * self.scale | |
| context = torch.einsum("b h d n, b h e n -> b h d e", k, v) | |
| out = torch.einsum("b h d e, b h d n -> b h e n", context, q) | |
| out = rearrange(out, "b h c (x y) -> b (h c) x y", h=self.heads, x=h, y=w) | |
| return self.to_out(out) | |
| class Attention(nn.Module): | |
| def __init__(self, dim, heads=4, dim_head=32, flash=False): | |
| super().__init__() | |
| self.heads = heads | |
| hidden_dim = dim_head * heads | |
| self.norm = RMSNorm(dim) | |
| self.attend = Attend(flash=flash) | |
| self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False) | |
| self.to_out = nn.Conv2d(hidden_dim, dim, 1) | |
| def forward(self, x): | |
| b, c, h, w = x.shape | |
| x = self.norm(x) | |
| qkv = self.to_qkv(x).chunk(3, dim=1) | |
| q, k, v = map( | |
| lambda t: rearrange(t, "b (h c) x y -> b h (x y) c", h=self.heads), qkv | |
| ) | |
| out = self.attend(q, k, v) | |
| out = rearrange(out, "b h (x y) d -> b (h d) x y", x=h, y=w) | |
| return self.to_out(out) | |
| # feedforward | |
| def FeedForward(dim, mult=4): | |
| return nn.Sequential( | |
| RMSNorm(dim), | |
| nn.Conv2d(dim, dim * mult, 1), | |
| nn.GELU(), | |
| nn.Conv2d(dim * mult, dim, 1), | |
| ) | |
| # transformers | |
| class Transformer(nn.Module): | |
| def __init__(self, dim, dim_head=64, heads=8, depth=1, flash_attn=True, ff_mult=4): | |
| super().__init__() | |
| self.layers = nn.ModuleList([]) | |
| for _ in range(depth): | |
| self.layers.append( | |
| nn.ModuleList( | |
| [ | |
| Attention( | |
| dim=dim, dim_head=dim_head, heads=heads, flash=flash_attn | |
| ), | |
| FeedForward(dim=dim, mult=ff_mult), | |
| ] | |
| ) | |
| ) | |
| def forward(self, x): | |
| for attn, ff in self.layers: | |
| x = attn(x) + x | |
| x = ff(x) + x | |
| return x | |
| class LinearTransformer(nn.Module): | |
| def __init__(self, dim, dim_head=64, heads=8, depth=1, ff_mult=4): | |
| super().__init__() | |
| self.layers = nn.ModuleList([]) | |
| for _ in range(depth): | |
| self.layers.append( | |
| nn.ModuleList( | |
| [ | |
| LinearAttention(dim=dim, dim_head=dim_head, heads=heads), | |
| FeedForward(dim=dim, mult=ff_mult), | |
| ] | |
| ) | |
| ) | |
| def forward(self, x): | |
| for attn, ff in self.layers: | |
| x = attn(x) + x | |
| x = ff(x) + x | |
| return x | |
| class NearestNeighborhoodUpsample(nn.Module): | |
| def __init__(self, dim, dim_out=None): | |
| super().__init__() | |
| dim_out = default(dim_out, dim) | |
| self.conv = nn.Conv2d(dim, dim_out, kernel_size=3, stride=1, padding=1) | |
| def forward(self, x): | |
| if x.shape[0] >= 64: | |
| x = x.contiguous() | |
| x = F.interpolate(x, scale_factor=2.0, mode="nearest") | |
| x = self.conv(x) | |
| return x | |
| class EqualLinear(nn.Module): | |
| def __init__(self, dim, dim_out, lr_mul=1, bias=True): | |
| super().__init__() | |
| self.weight = nn.Parameter(torch.randn(dim_out, dim)) | |
| if bias: | |
| self.bias = nn.Parameter(torch.zeros(dim_out)) | |
| self.lr_mul = lr_mul | |
| def forward(self, input): | |
| return F.linear(input, self.weight * self.lr_mul, bias=self.bias * self.lr_mul) | |
| class StyleGanNetwork(nn.Module): | |
| def __init__(self, dim_in=128, dim_out=512, depth=8, lr_mul=0.1, dim_text_latent=0): | |
| super().__init__() | |
| self.dim_in = dim_in | |
| self.dim_out = dim_out | |
| self.dim_text_latent = dim_text_latent | |
| layers = [] | |
| for i in range(depth): | |
| is_first = i == 0 | |
| if is_first: | |
| dim_in_layer = dim_in + dim_text_latent | |
| else: | |
| dim_in_layer = dim_out | |
| dim_out_layer = dim_out | |
| layers.extend( | |
| [EqualLinear(dim_in_layer, dim_out_layer, lr_mul), nn.LeakyReLU(0.2)] | |
| ) | |
| self.net = nn.Sequential(*layers) | |
| def forward(self, x, text_latent=None): | |
| x = F.normalize(x, dim=1) | |
| if self.dim_text_latent > 0: | |
| assert exists(text_latent) | |
| x = torch.cat((x, text_latent), dim=-1) | |
| return self.net(x) | |
| class UnetUpsampler(torch.nn.Module): | |
| def __init__( | |
| self, | |
| dim: int, | |
| *, | |
| image_size: int, | |
| input_image_size: int, | |
| init_dim: Optional[int] = None, | |
| out_dim: Optional[int] = None, | |
| style_network: Optional[dict] = None, | |
| up_dim_mults: tuple = (1, 2, 4, 8, 16), | |
| down_dim_mults: tuple = (4, 8, 16), | |
| channels: int = 3, | |
| resnet_block_groups: int = 8, | |
| full_attn: tuple = (False, False, False, True, True), | |
| flash_attn: bool = True, | |
| self_attn_dim_head: int = 64, | |
| self_attn_heads: int = 8, | |
| attn_depths: tuple = (2, 2, 2, 2, 4), | |
| mid_attn_depth: int = 4, | |
| num_conv_kernels: int = 4, | |
| resize_mode: str = "bilinear", | |
| unconditional: bool = True, | |
| skip_connect_scale: Optional[float] = None, | |
| ): | |
| super().__init__() | |
| self.style_network = style_network = StyleGanNetwork(**style_network) | |
| self.unconditional = unconditional | |
| assert not ( | |
| unconditional | |
| and exists(style_network) | |
| and style_network.dim_text_latent > 0 | |
| ) | |
| assert is_power_of_two(image_size) and is_power_of_two( | |
| input_image_size | |
| ), "both output image size and input image size must be power of 2" | |
| assert ( | |
| input_image_size < image_size | |
| ), "input image size must be smaller than the output image size, thus upsampling" | |
| self.image_size = image_size | |
| self.input_image_size = input_image_size | |
| style_embed_split_dims = [] | |
| self.channels = channels | |
| input_channels = channels | |
| init_dim = default(init_dim, dim) | |
| up_dims = [init_dim, *map(lambda m: dim * m, up_dim_mults)] | |
| init_down_dim = up_dims[len(up_dim_mults) - len(down_dim_mults)] | |
| down_dims = [init_down_dim, *map(lambda m: dim * m, down_dim_mults)] | |
| self.init_conv = nn.Conv2d(input_channels, init_down_dim, 7, padding=3) | |
| up_in_out = list(zip(up_dims[:-1], up_dims[1:])) | |
| down_in_out = list(zip(down_dims[:-1], down_dims[1:])) | |
| block_klass = partial( | |
| ResnetBlock, | |
| groups=resnet_block_groups, | |
| num_conv_kernels=num_conv_kernels, | |
| style_dims=style_embed_split_dims, | |
| ) | |
| FullAttention = partial(Transformer, flash_attn=flash_attn) | |
| *_, mid_dim = up_dims | |
| self.skip_connect_scale = default(skip_connect_scale, 2**-0.5) | |
| self.downs = nn.ModuleList([]) | |
| self.ups = nn.ModuleList([]) | |
| block_count = 6 | |
| for ind, ( | |
| (dim_in, dim_out), | |
| layer_full_attn, | |
| layer_attn_depth, | |
| ) in enumerate(zip(down_in_out, full_attn, attn_depths)): | |
| attn_klass = FullAttention if layer_full_attn else LinearTransformer | |
| blocks = [] | |
| for i in range(block_count): | |
| blocks.append(block_klass(dim_in, dim_in)) | |
| self.downs.append( | |
| nn.ModuleList( | |
| [ | |
| nn.ModuleList(blocks), | |
| nn.ModuleList( | |
| [ | |
| ( | |
| attn_klass( | |
| dim_in, | |
| dim_head=self_attn_dim_head, | |
| heads=self_attn_heads, | |
| depth=layer_attn_depth, | |
| ) | |
| if layer_full_attn | |
| else None | |
| ), | |
| nn.Conv2d( | |
| dim_in, dim_out, kernel_size=3, stride=2, padding=1 | |
| ), | |
| ] | |
| ), | |
| ] | |
| ) | |
| ) | |
| self.mid_block1 = block_klass(mid_dim, mid_dim) | |
| self.mid_attn = FullAttention( | |
| mid_dim, | |
| dim_head=self_attn_dim_head, | |
| heads=self_attn_heads, | |
| depth=mid_attn_depth, | |
| ) | |
| self.mid_block2 = block_klass(mid_dim, mid_dim) | |
| *_, last_dim = up_dims | |
| for ind, ( | |
| (dim_in, dim_out), | |
| layer_full_attn, | |
| layer_attn_depth, | |
| ) in enumerate( | |
| zip( | |
| reversed(up_in_out), | |
| reversed(full_attn), | |
| reversed(attn_depths), | |
| ) | |
| ): | |
| attn_klass = FullAttention if layer_full_attn else LinearTransformer | |
| blocks = [] | |
| input_dim = dim_in * 2 if ind < len(down_in_out) else dim_in | |
| for i in range(block_count): | |
| blocks.append(block_klass(input_dim, dim_in)) | |
| self.ups.append( | |
| nn.ModuleList( | |
| [ | |
| nn.ModuleList(blocks), | |
| nn.ModuleList( | |
| [ | |
| NearestNeighborhoodUpsample( | |
| last_dim if ind == 0 else dim_out, | |
| dim_in, | |
| ), | |
| ( | |
| attn_klass( | |
| dim_in, | |
| dim_head=self_attn_dim_head, | |
| heads=self_attn_heads, | |
| depth=layer_attn_depth, | |
| ) | |
| if layer_full_attn | |
| else None | |
| ), | |
| ] | |
| ), | |
| ] | |
| ) | |
| ) | |
| self.out_dim = default(out_dim, channels) | |
| self.final_res_block = block_klass(dim, dim) | |
| self.final_to_rgb = nn.Conv2d(dim, channels, 1) | |
| self.resize_mode = resize_mode | |
| self.style_to_conv_modulations = nn.Linear( | |
| style_network.dim_out, sum(style_embed_split_dims) | |
| ) | |
| self.style_embed_split_dims = style_embed_split_dims | |
| def allowable_rgb_resolutions(self): | |
| input_res_base = int(log2(self.input_image_size)) | |
| output_res_base = int(log2(self.image_size)) | |
| allowed_rgb_res_base = list(range(input_res_base, output_res_base)) | |
| return [*map(lambda p: 2**p, allowed_rgb_res_base)] | |
| def device(self): | |
| return next(self.parameters()).device | |
| def total_params(self): | |
| return sum([p.numel() for p in self.parameters()]) | |
| def resize_image_to(self, x, size): | |
| return F.interpolate(x, (size, size), mode=self.resize_mode) | |
| def forward( | |
| self, | |
| lowres_image: torch.Tensor, | |
| styles: Optional[torch.Tensor] = None, | |
| noise: Optional[torch.Tensor] = None, | |
| global_text_tokens: Optional[torch.Tensor] = None, | |
| return_all_rgbs: bool = False, | |
| ): | |
| x = lowres_image | |
| noise_scale = 0.001 # Adjust the scale of the noise as needed | |
| noise_aug = torch.randn_like(x) * noise_scale | |
| x = x + noise_aug | |
| x = x.clamp(0, 1) | |
| shape = x.shape | |
| batch_size = shape[0] | |
| assert shape[-2:] == ((self.input_image_size,) * 2) | |
| # styles | |
| if not exists(styles): | |
| assert exists(self.style_network) | |
| noise = default( | |
| noise, | |
| torch.randn( | |
| (batch_size, self.style_network.dim_in), device=self.device | |
| ), | |
| ) | |
| styles = self.style_network(noise, global_text_tokens) | |
| # project styles to conv modulations | |
| conv_mods = self.style_to_conv_modulations(styles) | |
| conv_mods = conv_mods.split(self.style_embed_split_dims, dim=-1) | |
| conv_mods = iter(conv_mods) | |
| x = self.init_conv(x) | |
| h = [] | |
| for blocks, (attn, downsample) in self.downs: | |
| for block in blocks: | |
| x = block(x, conv_mods_iter=conv_mods) | |
| h.append(x) | |
| if attn is not None: | |
| x = attn(x) | |
| x = downsample(x) | |
| x = self.mid_block1(x, conv_mods_iter=conv_mods) | |
| x = self.mid_attn(x) | |
| x = self.mid_block2(x, conv_mods_iter=conv_mods) | |
| for ( | |
| blocks, | |
| ( | |
| upsample, | |
| attn, | |
| ), | |
| ) in self.ups: | |
| x = upsample(x) | |
| for block in blocks: | |
| if h != []: | |
| res = h.pop() | |
| res = res * self.skip_connect_scale | |
| x = torch.cat((x, res), dim=1) | |
| x = block(x, conv_mods_iter=conv_mods) | |
| if attn is not None: | |
| x = attn(x) | |
| x = self.final_res_block(x, conv_mods_iter=conv_mods) | |
| rgb = self.final_to_rgb(x) | |
| if not return_all_rgbs: | |
| return rgb | |
| return rgb, [] | |
| def tile_image(image, chunk_size=64): | |
| c, h, w = image.shape | |
| h_chunks = ceil(h / chunk_size) | |
| w_chunks = ceil(w / chunk_size) | |
| tiles = [] | |
| for i in range(h_chunks): | |
| for j in range(w_chunks): | |
| tile = image[ | |
| :, | |
| i * chunk_size : (i + 1) * chunk_size, | |
| j * chunk_size : (j + 1) * chunk_size, | |
| ] | |
| tiles.append(tile) | |
| return tiles, h_chunks, w_chunks | |
| # This helps create a checkboard pattern with some edge blending | |
| def create_checkerboard_weights(tile_size): | |
| x = torch.linspace(-1, 1, tile_size) | |
| y = torch.linspace(-1, 1, tile_size) | |
| x, y = torch.meshgrid(x, y, indexing="ij") | |
| d = torch.sqrt(x * x + y * y) | |
| sigma, mu = 0.5, 0.0 | |
| weights = torch.exp(-((d - mu) ** 2 / (2.0 * sigma**2))) | |
| # saturate the values to sure get high weights in the center | |
| weights = weights**8 | |
| return weights / weights.max() # Normalize to [0, 1] | |
| def repeat_weights(weights, image_size): | |
| tile_size = weights.shape[0] | |
| repeats = ( | |
| math.ceil(image_size[0] / tile_size), | |
| math.ceil(image_size[1] / tile_size), | |
| ) | |
| return weights.repeat(repeats)[: image_size[0], : image_size[1]] | |
| def create_offset_weights(weights, image_size): | |
| tile_size = weights.shape[0] | |
| offset = tile_size // 2 | |
| full_weights = repeat_weights( | |
| weights, (image_size[0] + offset, image_size[1] + offset) | |
| ) | |
| return full_weights[offset:, offset:] | |
| def merge_tiles(tiles, h_chunks, w_chunks, chunk_size=64): | |
| # Determine the shape of the output tensor | |
| c = tiles[0].shape[0] | |
| h = h_chunks * chunk_size | |
| w = w_chunks * chunk_size | |
| # Create an empty tensor to hold the merged image | |
| merged = torch.zeros((c, h, w), dtype=tiles[0].dtype) | |
| # Iterate over the tiles and place them in the correct position | |
| for idx, tile in enumerate(tiles): | |
| i = idx // w_chunks | |
| j = idx % w_chunks | |
| h_start = i * chunk_size | |
| w_start = j * chunk_size | |
| tile_h, tile_w = tile.shape[1:] | |
| merged[:, h_start : h_start + tile_h, w_start : w_start + tile_w] = tile | |
| return merged | |
| class AuraSR: | |
| def __init__(self, config: dict[str, Any], device: str = "cuda"): | |
| self.upsampler = UnetUpsampler(**config).to(device) | |
| self.input_image_size = config["input_image_size"] | |
| def from_pretrained( | |
| cls, | |
| model_id: str = "fal-ai/AuraSR", | |
| use_safetensors: bool = True, | |
| device: str = "cuda", | |
| ): | |
| import json | |
| import torch | |
| from pathlib import Path | |
| from huggingface_hub import snapshot_download | |
| # Check if model_id is a local file | |
| if Path(model_id).is_file(): | |
| local_file = Path(model_id) | |
| if local_file.suffix == ".safetensors": | |
| use_safetensors = True | |
| elif local_file.suffix == ".ckpt": | |
| use_safetensors = False | |
| else: | |
| raise ValueError( | |
| f"Unsupported file format: {local_file.suffix}. Please use .safetensors or .ckpt files." | |
| ) | |
| # For local files, we need to provide the config separately | |
| config_path = local_file.with_name("config.json") | |
| if not config_path.exists(): | |
| raise FileNotFoundError( | |
| f"Config file not found: {config_path}. " | |
| f"When loading from a local file, ensure that 'config.json' " | |
| f"is present in the same directory as '{local_file.name}'. " | |
| f"If you're trying to load a model from Hugging Face, " | |
| f"please provide the model ID instead of a file path." | |
| ) | |
| config = json.loads(config_path.read_text()) | |
| hf_model_path = local_file.parent | |
| else: | |
| hf_model_path = Path( | |
| snapshot_download(model_id, ignore_patterns=["*.ckpt"]) | |
| ) | |
| config = json.loads((hf_model_path / "config.json").read_text()) | |
| model = cls(config, device) | |
| if use_safetensors: | |
| try: | |
| from safetensors.torch import load_file | |
| checkpoint = load_file( | |
| hf_model_path / "model.safetensors" | |
| if not Path(model_id).is_file() | |
| else model_id | |
| ) | |
| except ImportError: | |
| raise ImportError( | |
| "The safetensors library is not installed. " | |
| "Please install it with `pip install safetensors` " | |
| "or use `use_safetensors=False` to load the model with PyTorch." | |
| ) | |
| else: | |
| checkpoint = torch.load( | |
| hf_model_path / "model.ckpt" | |
| if not Path(model_id).is_file() | |
| else model_id | |
| ) | |
| model.upsampler.load_state_dict(checkpoint, strict=True) | |
| return model | |
| def upscale_4x(self, image: Image.Image, max_batch_size=8) -> Image.Image: | |
| tensor_transform = transforms.ToTensor() | |
| device = self.upsampler.device | |
| image_tensor = tensor_transform(image).unsqueeze(0) | |
| _, _, h, w = image_tensor.shape | |
| pad_h = ( | |
| self.input_image_size - h % self.input_image_size | |
| ) % self.input_image_size | |
| pad_w = ( | |
| self.input_image_size - w % self.input_image_size | |
| ) % self.input_image_size | |
| # Pad the image | |
| image_tensor = torch.nn.functional.pad( | |
| image_tensor, (0, pad_w, 0, pad_h), mode="reflect" | |
| ).squeeze(0) | |
| tiles, h_chunks, w_chunks = tile_image(image_tensor, self.input_image_size) | |
| # Batch processing of tiles | |
| num_tiles = len(tiles) | |
| batches = [ | |
| tiles[i : i + max_batch_size] for i in range(0, num_tiles, max_batch_size) | |
| ] | |
| reconstructed_tiles = [] | |
| for batch in batches: | |
| model_input = torch.stack(batch).to(device) | |
| generator_output = self.upsampler( | |
| lowres_image=model_input, | |
| noise=torch.randn(model_input.shape[0], 128, device=device), | |
| ) | |
| reconstructed_tiles.extend( | |
| list(generator_output.clamp_(0, 1).detach().cpu()) | |
| ) | |
| merged_tensor = merge_tiles( | |
| reconstructed_tiles, h_chunks, w_chunks, self.input_image_size * 4 | |
| ) | |
| unpadded = merged_tensor[:, : h * 4, : w * 4] | |
| to_pil = transforms.ToPILImage() | |
| return to_pil(unpadded) | |
| # Tiled 4x upscaling with overlapping tiles to reduce seam artifacts | |
| # weights options are 'checkboard' and 'constant' | |
| def upscale_4x_overlapped(self, image, max_batch_size=8, weight_type="checkboard"): | |
| tensor_transform = transforms.ToTensor() | |
| device = self.upsampler.device | |
| image_tensor = tensor_transform(image).unsqueeze(0) | |
| _, _, h, w = image_tensor.shape | |
| # Calculate paddings | |
| pad_h = ( | |
| self.input_image_size - h % self.input_image_size | |
| ) % self.input_image_size | |
| pad_w = ( | |
| self.input_image_size - w % self.input_image_size | |
| ) % self.input_image_size | |
| # Pad the image | |
| image_tensor = torch.nn.functional.pad( | |
| image_tensor, (0, pad_w, 0, pad_h), mode="reflect" | |
| ).squeeze(0) | |
| # Function to process tiles | |
| def process_tiles(tiles, h_chunks, w_chunks): | |
| num_tiles = len(tiles) | |
| batches = [ | |
| tiles[i : i + max_batch_size] | |
| for i in range(0, num_tiles, max_batch_size) | |
| ] | |
| reconstructed_tiles = [] | |
| for batch in batches: | |
| model_input = torch.stack(batch).to(device) | |
| generator_output = self.upsampler( | |
| lowres_image=model_input, | |
| noise=torch.randn(model_input.shape[0], 128, device=device), | |
| ) | |
| reconstructed_tiles.extend( | |
| list(generator_output.clamp_(0, 1).detach().cpu()) | |
| ) | |
| return merge_tiles( | |
| reconstructed_tiles, h_chunks, w_chunks, self.input_image_size * 4 | |
| ) | |
| # First pass | |
| tiles1, h_chunks1, w_chunks1 = tile_image(image_tensor, self.input_image_size) | |
| result1 = process_tiles(tiles1, h_chunks1, w_chunks1) | |
| # Second pass with offset | |
| offset = self.input_image_size // 2 | |
| image_tensor_offset = torch.nn.functional.pad( | |
| image_tensor, (offset, offset, offset, offset), mode="reflect" | |
| ).squeeze(0) | |
| tiles2, h_chunks2, w_chunks2 = tile_image( | |
| image_tensor_offset, self.input_image_size | |
| ) | |
| result2 = process_tiles(tiles2, h_chunks2, w_chunks2) | |
| # unpad | |
| offset_4x = offset * 4 | |
| result2_interior = result2[:, offset_4x:-offset_4x, offset_4x:-offset_4x] | |
| if weight_type == "checkboard": | |
| weight_tile = create_checkerboard_weights(self.input_image_size * 4) | |
| weight_shape = result2_interior.shape[1:] | |
| weights_1 = create_offset_weights(weight_tile, weight_shape) | |
| weights_2 = repeat_weights(weight_tile, weight_shape) | |
| normalizer = weights_1 + weights_2 | |
| weights_1 = weights_1 / normalizer | |
| weights_2 = weights_2 / normalizer | |
| weights_1 = weights_1.unsqueeze(0).repeat(3, 1, 1) | |
| weights_2 = weights_2.unsqueeze(0).repeat(3, 1, 1) | |
| elif weight_type == "constant": | |
| weights_1 = torch.ones_like(result2_interior) * 0.5 | |
| weights_2 = weights_1 | |
| else: | |
| raise ValueError( | |
| "weight_type should be either 'gaussian' or 'constant' but got", | |
| weight_type, | |
| ) | |
| result1 = result1 * weights_2 | |
| result2 = result2_interior * weights_1 | |
| # Average the overlapping region | |
| result1 = result1 + result2 | |
| # Remove padding | |
| unpadded = result1[:, : h * 4, : w * 4] | |
| to_pil = transforms.ToPILImage() | |
| return to_pil(unpadded) | |