Spaces:
Running
on
Zero
Running
on
Zero
Upload 2 files
Browse files
MeshAnything/models/meshanything_v2.py
ADDED
|
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as nnf
|
| 3 |
+
from torch import nn
|
| 4 |
+
import random
|
| 5 |
+
from transformers import AutoModelForCausalLM
|
| 6 |
+
from MeshAnything.miche.encode import load_model
|
| 7 |
+
from MeshAnything.models.shape_opt import ShapeOPTConfig
|
| 8 |
+
from einops import repeat, reduce, rearrange, pack, unpack
|
| 9 |
+
|
| 10 |
+
class MeshAnythingV2(nn.Module):
|
| 11 |
+
def __init__(self):
|
| 12 |
+
super().__init__()
|
| 13 |
+
self.point_encoder = load_model(ckpt_path=None)
|
| 14 |
+
self.n_discrete_size = 128
|
| 15 |
+
self.max_seq_ratio = 0.70
|
| 16 |
+
self.face_per_token = 9
|
| 17 |
+
self.cond_length = 257
|
| 18 |
+
self.cond_dim = 768
|
| 19 |
+
self.pad_id = -1
|
| 20 |
+
self.n_max_triangles = 1600
|
| 21 |
+
self.max_length = int(self.n_max_triangles * self.face_per_token * self.max_seq_ratio + 3 + self.cond_length) # add 1
|
| 22 |
+
|
| 23 |
+
self.coor_continuous_range = (-0.5, 0.5)
|
| 24 |
+
|
| 25 |
+
self.config = ShapeOPTConfig.from_pretrained(
|
| 26 |
+
"facebook/opt-350m",
|
| 27 |
+
n_positions=self.max_length,
|
| 28 |
+
max_position_embeddings=self.max_length,
|
| 29 |
+
vocab_size=self.n_discrete_size + 4,
|
| 30 |
+
_attn_implementation="flash_attention_2"
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
self.bos_token_id = 0
|
| 34 |
+
self.eos_token_id = 1
|
| 35 |
+
self.pad_token_id = 2
|
| 36 |
+
|
| 37 |
+
self.config.bos_token_id = self.bos_token_id
|
| 38 |
+
self.config.eos_token_id = self.eos_token_id
|
| 39 |
+
self.config.pad_token_id = self.pad_token_id
|
| 40 |
+
self.config._attn_implementation="flash_attention_2"
|
| 41 |
+
self.config.n_discrete_size = self.n_discrete_size
|
| 42 |
+
self.config.face_per_token = self.face_per_token
|
| 43 |
+
self.config.cond_length = self.cond_length
|
| 44 |
+
|
| 45 |
+
if self.config.word_embed_proj_dim != self.config.hidden_size:
|
| 46 |
+
self.config.word_embed_proj_dim = self.config.hidden_size
|
| 47 |
+
self.transformer = AutoModelForCausalLM.from_config(
|
| 48 |
+
config=self.config, use_flash_attention_2 = True
|
| 49 |
+
)
|
| 50 |
+
self.transformer.to_bettertransformer()
|
| 51 |
+
|
| 52 |
+
self.cond_head_proj = nn.Linear(self.cond_dim, self.config.word_embed_proj_dim)
|
| 53 |
+
self.cond_proj = nn.Linear(self.cond_dim * 2, self.config.word_embed_proj_dim)
|
| 54 |
+
|
| 55 |
+
self.eval()
|
| 56 |
+
|
| 57 |
+
def adjacent_detokenize(self, input_ids):
|
| 58 |
+
input_ids = input_ids.reshape(input_ids.shape[0], -1) # B x L
|
| 59 |
+
batch_size = input_ids.shape[0]
|
| 60 |
+
continuous_coors = torch.zeros((batch_size, self.n_max_triangles * 3 * 10, 3), device=input_ids.device)
|
| 61 |
+
continuous_coors[...] = float('nan')
|
| 62 |
+
|
| 63 |
+
for i in range(batch_size):
|
| 64 |
+
cur_ids = input_ids[i]
|
| 65 |
+
coor_loop_check = 0
|
| 66 |
+
vertice_count = 0
|
| 67 |
+
continuous_coors[i, :3, :] = torch.tensor([[-0.1, 0.0, 0.1], [-0.1, 0.1, 0.2], [-0.3, 0.3, 0.2]],
|
| 68 |
+
device=input_ids.device)
|
| 69 |
+
for id in cur_ids:
|
| 70 |
+
if id == self.pad_id:
|
| 71 |
+
break
|
| 72 |
+
elif id == self.n_discrete_size:
|
| 73 |
+
if coor_loop_check < 9:
|
| 74 |
+
break
|
| 75 |
+
if coor_loop_check % 3 !=0:
|
| 76 |
+
break
|
| 77 |
+
coor_loop_check = 0
|
| 78 |
+
else:
|
| 79 |
+
|
| 80 |
+
if coor_loop_check % 3 == 0 and coor_loop_check >= 9:
|
| 81 |
+
continuous_coors[i, vertice_count] = continuous_coors[i, vertice_count-2]
|
| 82 |
+
continuous_coors[i, vertice_count+1] = continuous_coors[i, vertice_count-1]
|
| 83 |
+
vertice_count += 2
|
| 84 |
+
continuous_coors[i, vertice_count, coor_loop_check % 3] = undiscretize(id, self.coor_continuous_range[0], self.coor_continuous_range[1], self.n_discrete_size)
|
| 85 |
+
if coor_loop_check % 3 == 2:
|
| 86 |
+
vertice_count += 1
|
| 87 |
+
coor_loop_check += 1
|
| 88 |
+
|
| 89 |
+
continuous_coors = rearrange(continuous_coors, 'b (nf nv) c -> b nf nv c', nv=3, c=3)
|
| 90 |
+
|
| 91 |
+
return continuous_coors # b, nf, 3, 3
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def forward(self, data_dict: dict, is_eval: bool = False) -> dict:
|
| 95 |
+
if not is_eval:
|
| 96 |
+
return self.train_one_step(data_dict)
|
| 97 |
+
else:
|
| 98 |
+
return self.generate(data_dict)
|
| 99 |
+
|
| 100 |
+
def process_point_feature(self, point_feature):
|
| 101 |
+
encode_feature = torch.zeros(point_feature.shape[0], self.cond_length, self.config.word_embed_proj_dim,
|
| 102 |
+
device=self.cond_head_proj.weight.device, dtype=self.cond_head_proj.weight.dtype)
|
| 103 |
+
encode_feature[:, 0] = self.cond_head_proj(point_feature[:, 0])
|
| 104 |
+
shape_latents = self.point_encoder.to_shape_latents(point_feature[:, 1:])
|
| 105 |
+
encode_feature[:, 1:] = self.cond_proj(torch.cat([point_feature[:, 1:], shape_latents], dim=-1))
|
| 106 |
+
|
| 107 |
+
return encode_feature
|
| 108 |
+
|
| 109 |
+
@torch.no_grad()
|
| 110 |
+
def forward(self, pc_normal, sampling=False) -> dict:
|
| 111 |
+
batch_size = pc_normal.shape[0]
|
| 112 |
+
point_feature = self.point_encoder.encode_latents(pc_normal)
|
| 113 |
+
processed_point_feature = self.process_point_feature(point_feature)
|
| 114 |
+
generate_length = self.max_length - self.cond_length
|
| 115 |
+
net_device = next(self.parameters()).device
|
| 116 |
+
outputs = torch.ones(batch_size, generate_length).long().to(net_device) * self.eos_token_id
|
| 117 |
+
# batch x ntokens
|
| 118 |
+
if not sampling:
|
| 119 |
+
results = self.transformer.generate(
|
| 120 |
+
inputs_embeds=processed_point_feature,
|
| 121 |
+
max_new_tokens=generate_length, # all faces plus two
|
| 122 |
+
num_beams=1,
|
| 123 |
+
bos_token_id=self.bos_token_id,
|
| 124 |
+
eos_token_id=self.eos_token_id,
|
| 125 |
+
pad_token_id=self.pad_token_id,
|
| 126 |
+
)
|
| 127 |
+
else:
|
| 128 |
+
results = self.transformer.generate(
|
| 129 |
+
inputs_embeds = processed_point_feature,
|
| 130 |
+
max_new_tokens = generate_length, # all faces plus two
|
| 131 |
+
do_sample=True,
|
| 132 |
+
top_k=50,
|
| 133 |
+
top_p=0.95,
|
| 134 |
+
bos_token_id = self.bos_token_id,
|
| 135 |
+
eos_token_id = self.eos_token_id,
|
| 136 |
+
pad_token_id = self.pad_token_id,
|
| 137 |
+
)
|
| 138 |
+
assert results.shape[1] <= generate_length # B x ID bos is not included since it's predicted
|
| 139 |
+
outputs[:, :results.shape[1]] = results
|
| 140 |
+
# batch x ntokens ====> batch x ntokens x D
|
| 141 |
+
outputs = outputs[:, 1: -1]
|
| 142 |
+
|
| 143 |
+
outputs[outputs == self.bos_token_id] = self.pad_id
|
| 144 |
+
outputs[outputs == self.eos_token_id] = self.pad_id
|
| 145 |
+
outputs[outputs == self.pad_token_id] = self.pad_id
|
| 146 |
+
|
| 147 |
+
outputs[outputs != self.pad_id] -= 3
|
| 148 |
+
gen_mesh = self.adjacent_detokenize(outputs)
|
| 149 |
+
|
| 150 |
+
return gen_mesh
|
| 151 |
+
|
| 152 |
+
def undiscretize(
|
| 153 |
+
t,
|
| 154 |
+
low,#-0.5
|
| 155 |
+
high,# 0.5
|
| 156 |
+
num_discrete
|
| 157 |
+
):
|
| 158 |
+
t = t.float() #[0, num_discrete-1]
|
| 159 |
+
|
| 160 |
+
t /= num_discrete # 0<=t<1
|
| 161 |
+
t = t * (high - low) + low # -0.5 <= t < 0.5
|
| 162 |
+
return t
|
MeshAnything/models/shape_opt.py
CHANGED
|
@@ -8,9 +8,8 @@ from transformers.modeling_outputs import (
|
|
| 8 |
import torch
|
| 9 |
from torch import nn
|
| 10 |
from torch.nn import CrossEntropyLoss
|
| 11 |
-
from transformers.utils import replace_return_docstrings
|
| 12 |
from transformers.modeling_outputs import BaseModelOutputWithPast
|
| 13 |
-
# from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
| 14 |
|
| 15 |
class ShapeOPTConfig(OPTConfig):
|
| 16 |
model_type = "shape_opt"
|
|
@@ -26,23 +25,6 @@ class ShapeOPT(OPTForCausalLM):
|
|
| 26 |
# Initialize weights and apply final processing
|
| 27 |
self.post_init()
|
| 28 |
|
| 29 |
-
def tie_weights(self):
|
| 30 |
-
"""
|
| 31 |
-
Tie the weights between the input embeddings and the output embeddings.
|
| 32 |
-
|
| 33 |
-
If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the
|
| 34 |
-
weights instead.
|
| 35 |
-
"""
|
| 36 |
-
if getattr(self.config, "is_encoder_decoder", False) and getattr(self.config, "tie_encoder_decoder", False):
|
| 37 |
-
if hasattr(self, self.base_model_prefix):
|
| 38 |
-
self = getattr(self, self.base_model_prefix)
|
| 39 |
-
self._tie_encoder_decoder_weights(self.encoder, self.decoder, self.base_model_prefix)
|
| 40 |
-
|
| 41 |
-
for module in self.modules():
|
| 42 |
-
if hasattr(module, "_tie_weights"):
|
| 43 |
-
module._tie_weights()
|
| 44 |
-
|
| 45 |
-
|
| 46 |
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class="OPTConfig")
|
| 47 |
def forward(
|
| 48 |
self,
|
|
@@ -140,7 +122,7 @@ class ShapeOPT(OPTForCausalLM):
|
|
| 140 |
|
| 141 |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 142 |
outputs = self.model.decoder(
|
| 143 |
-
input_ids=input_ids,
|
| 144 |
face_ids = face_ids,
|
| 145 |
attention_mask=attention_mask,
|
| 146 |
head_mask=head_mask,
|
|
@@ -195,28 +177,18 @@ class ShapeOPTDecoder(OPTDecoder):
|
|
| 195 |
self.padding_idx = config.pad_token_id
|
| 196 |
self.max_target_positions = config.max_position_embeddings
|
| 197 |
self.vocab_size = config.vocab_size
|
| 198 |
-
|
| 199 |
-
self.embed_tokens = nn.Embedding(config.vocab_size, config.word_embed_proj_dim, self.padding_idx) # not used
|
| 200 |
self.hidden_size = config.hidden_size
|
| 201 |
self.word_embed_proj_dim = config.word_embed_proj_dim
|
| 202 |
-
self.
|
| 203 |
-
self.input_layer = nn.Linear(config.quantize_codebook_dim, config.word_embed_proj_dim)
|
| 204 |
|
| 205 |
self.embed_positions = OPTLearnedPositionalEmbedding(config.max_position_embeddings, config.hidden_size)
|
| 206 |
-
self.token_embed_positions =
|
|
|
|
| 207 |
self.face_per_token = config.face_per_token
|
| 208 |
self.cond_length = config.cond_length
|
| 209 |
self.cond_embed = nn.Embedding(2, config.word_embed_proj_dim)
|
| 210 |
|
| 211 |
-
if config.word_embed_proj_dim != config.hidden_size:
|
| 212 |
-
self.project_out = nn.Linear(config.hidden_size, config.word_embed_proj_dim, bias=False)
|
| 213 |
-
else:
|
| 214 |
-
self.project_out = None
|
| 215 |
-
|
| 216 |
-
if config.word_embed_proj_dim != config.hidden_size:
|
| 217 |
-
self.project_in = nn.Linear(config.word_embed_proj_dim, config.hidden_size, bias=False)
|
| 218 |
-
else:
|
| 219 |
-
self.project_in = None
|
| 220 |
# Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
|
| 221 |
# with checkpoints that have been fine-tuned before transformers v4.20.1
|
| 222 |
# see https://github.com/facebookresearch/metaseq/pull/164
|
|
@@ -234,17 +206,6 @@ class ShapeOPTDecoder(OPTDecoder):
|
|
| 234 |
# Initialize weights and apply final processing
|
| 235 |
self.post_init()
|
| 236 |
|
| 237 |
-
def embed_with_vae(self, input_ids):
|
| 238 |
-
inputs_embeds = repeat(torch.zeros(input_ids.shape, device=input_ids.device), 'b n -> b n d',
|
| 239 |
-
d=self.word_embed_proj_dim).clone().detach()
|
| 240 |
-
idx_in_extra = torch.isin(input_ids, torch.LongTensor([0, 1, 2]).to(input_ids.device))
|
| 241 |
-
inputs_embeds[idx_in_extra] += self.extra_embeds(input_ids[idx_in_extra])
|
| 242 |
-
self.quantize_codebooks = self.quantize_codebooks.to(input_ids.device)
|
| 243 |
-
inputs_embeds[~idx_in_extra] += self.input_layer(self.quantize_codebooks[0][input_ids[~idx_in_extra] - 3])
|
| 244 |
-
|
| 245 |
-
return inputs_embeds
|
| 246 |
-
|
| 247 |
-
|
| 248 |
def forward(
|
| 249 |
self,
|
| 250 |
input_ids: torch.LongTensor = None,
|
|
@@ -315,11 +276,13 @@ class ShapeOPTDecoder(OPTDecoder):
|
|
| 315 |
|
| 316 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 317 |
# Transformer Decoder
|
| 318 |
-
if input_ids is not None:
|
|
|
|
|
|
|
|
|
|
| 319 |
input_shape = input_ids.size()
|
| 320 |
input_ids = input_ids.view(-1, input_shape[-1])
|
| 321 |
-
inputs_embeds = self.
|
| 322 |
-
|
| 323 |
face_embeds = self.token_embed_positions(attention_mask[:, self.cond_length:], face_ids, input_ids,
|
| 324 |
self.face_per_token)
|
| 325 |
inputs_embeds += face_embeds
|
|
@@ -329,7 +292,8 @@ class ShapeOPTDecoder(OPTDecoder):
|
|
| 329 |
|
| 330 |
elif inputs_embeds is not None:
|
| 331 |
# assert self.cond and not self.training
|
| 332 |
-
|
|
|
|
| 333 |
total_length = inputs_embeds.shape[1] # B x length x embeding
|
| 334 |
cond_embed_query = torch.zeros((inputs_embeds.shape[0], total_length), device=inputs_embeds.device,
|
| 335 |
dtype=inputs_embeds.dtype).long()
|
|
@@ -357,9 +321,6 @@ class ShapeOPTDecoder(OPTDecoder):
|
|
| 357 |
|
| 358 |
pos_embeds = self.embed_positions(attention_mask, past_key_values_length)
|
| 359 |
|
| 360 |
-
if self.project_in is not None:
|
| 361 |
-
inputs_embeds = self.project_in(inputs_embeds)
|
| 362 |
-
|
| 363 |
hidden_states = inputs_embeds + pos_embeds
|
| 364 |
|
| 365 |
# decoder layers
|
|
@@ -419,9 +380,6 @@ class ShapeOPTDecoder(OPTDecoder):
|
|
| 419 |
if self.final_layer_norm is not None:
|
| 420 |
hidden_states = self.final_layer_norm(hidden_states)
|
| 421 |
|
| 422 |
-
if self.project_out is not None:
|
| 423 |
-
hidden_states = self.project_out(hidden_states)
|
| 424 |
-
|
| 425 |
# add hidden states from the last decoder layer
|
| 426 |
if output_hidden_states:
|
| 427 |
all_hidden_states += (hidden_states,)
|
|
@@ -436,6 +394,56 @@ class ShapeOPTDecoder(OPTDecoder):
|
|
| 436 |
attentions=all_self_attns,
|
| 437 |
)
|
| 438 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 439 |
class OPTFacePositionalEmbedding(nn.Embedding):
|
| 440 |
"""
|
| 441 |
This module learns positional embeddings up to a fixed maximum size.
|
|
|
|
| 8 |
import torch
|
| 9 |
from torch import nn
|
| 10 |
from torch.nn import CrossEntropyLoss
|
| 11 |
+
from transformers.utils import replace_return_docstrings
|
| 12 |
from transformers.modeling_outputs import BaseModelOutputWithPast
|
|
|
|
| 13 |
|
| 14 |
class ShapeOPTConfig(OPTConfig):
|
| 15 |
model_type = "shape_opt"
|
|
|
|
| 25 |
# Initialize weights and apply final processing
|
| 26 |
self.post_init()
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class="OPTConfig")
|
| 29 |
def forward(
|
| 30 |
self,
|
|
|
|
| 122 |
|
| 123 |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 124 |
outputs = self.model.decoder(
|
| 125 |
+
input_ids = input_ids,
|
| 126 |
face_ids = face_ids,
|
| 127 |
attention_mask=attention_mask,
|
| 128 |
head_mask=head_mask,
|
|
|
|
| 177 |
self.padding_idx = config.pad_token_id
|
| 178 |
self.max_target_positions = config.max_position_embeddings
|
| 179 |
self.vocab_size = config.vocab_size
|
| 180 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.word_embed_proj_dim, self.padding_idx)
|
|
|
|
| 181 |
self.hidden_size = config.hidden_size
|
| 182 |
self.word_embed_proj_dim = config.word_embed_proj_dim
|
| 183 |
+
self.n_discrete_size = config.n_discrete_size
|
|
|
|
| 184 |
|
| 185 |
self.embed_positions = OPTLearnedPositionalEmbedding(config.max_position_embeddings, config.hidden_size)
|
| 186 |
+
self.token_embed_positions = OPTLoopEmbedding(10, config.word_embed_proj_dim, self.n_discrete_size) #padding_idx=self.padding_idx)
|
| 187 |
+
|
| 188 |
self.face_per_token = config.face_per_token
|
| 189 |
self.cond_length = config.cond_length
|
| 190 |
self.cond_embed = nn.Embedding(2, config.word_embed_proj_dim)
|
| 191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
# Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
|
| 193 |
# with checkpoints that have been fine-tuned before transformers v4.20.1
|
| 194 |
# see https://github.com/facebookresearch/metaseq/pull/164
|
|
|
|
| 206 |
# Initialize weights and apply final processing
|
| 207 |
self.post_init()
|
| 208 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
def forward(
|
| 210 |
self,
|
| 211 |
input_ids: torch.LongTensor = None,
|
|
|
|
| 276 |
|
| 277 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 278 |
# Transformer Decoder
|
| 279 |
+
if input_ids is not None and inputs_embeds is not None: # when train and first generate
|
| 280 |
+
assert False
|
| 281 |
+
elif input_ids is not None:
|
| 282 |
+
assert not self.training
|
| 283 |
input_shape = input_ids.size()
|
| 284 |
input_ids = input_ids.view(-1, input_shape[-1])
|
| 285 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
|
|
|
| 286 |
face_embeds = self.token_embed_positions(attention_mask[:, self.cond_length:], face_ids, input_ids,
|
| 287 |
self.face_per_token)
|
| 288 |
inputs_embeds += face_embeds
|
|
|
|
| 292 |
|
| 293 |
elif inputs_embeds is not None:
|
| 294 |
# assert self.cond and not self.training
|
| 295 |
+
assert not self.training
|
| 296 |
+
self.token_embed_positions.init_state(inputs_embeds)
|
| 297 |
total_length = inputs_embeds.shape[1] # B x length x embeding
|
| 298 |
cond_embed_query = torch.zeros((inputs_embeds.shape[0], total_length), device=inputs_embeds.device,
|
| 299 |
dtype=inputs_embeds.dtype).long()
|
|
|
|
| 321 |
|
| 322 |
pos_embeds = self.embed_positions(attention_mask, past_key_values_length)
|
| 323 |
|
|
|
|
|
|
|
|
|
|
| 324 |
hidden_states = inputs_embeds + pos_embeds
|
| 325 |
|
| 326 |
# decoder layers
|
|
|
|
| 380 |
if self.final_layer_norm is not None:
|
| 381 |
hidden_states = self.final_layer_norm(hidden_states)
|
| 382 |
|
|
|
|
|
|
|
|
|
|
| 383 |
# add hidden states from the last decoder layer
|
| 384 |
if output_hidden_states:
|
| 385 |
all_hidden_states += (hidden_states,)
|
|
|
|
| 394 |
attentions=all_self_attns,
|
| 395 |
)
|
| 396 |
|
| 397 |
+
class OPTLoopEmbedding(nn.Embedding):
|
| 398 |
+
"""
|
| 399 |
+
This module learns positional embeddings up to a fixed maximum size.
|
| 400 |
+
"""
|
| 401 |
+
|
| 402 |
+
def __init__(self, num_embeddings: int, embedding_dim: int, n_discrete_size: int):
|
| 403 |
+
super().__init__(num_embeddings, embedding_dim)
|
| 404 |
+
self.state = None
|
| 405 |
+
self.loop_state = None
|
| 406 |
+
self.n_discrete_size = n_discrete_size + 3 # for padding
|
| 407 |
+
|
| 408 |
+
def forward(self, attention_mask=None, face_ids = None, input_ids = None, face_per_token = None):
|
| 409 |
+
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
|
| 410 |
+
if face_ids is not None:
|
| 411 |
+
return super().forward(face_ids)
|
| 412 |
+
|
| 413 |
+
assert input_ids.shape[1] == 1, "Only one token is allowed for loop embedding"
|
| 414 |
+
assert self.state is not None, "State is not initialized"
|
| 415 |
+
# zero as beginning
|
| 416 |
+
batch_size = input_ids.shape[0]
|
| 417 |
+
face_ids = input_ids.clone().detach()
|
| 418 |
+
|
| 419 |
+
for cur_batch_index in range(batch_size):
|
| 420 |
+
cur_ids = input_ids[cur_batch_index]
|
| 421 |
+
|
| 422 |
+
idx_in_extra = torch.isin(cur_ids, torch.LongTensor([0, 1, 2]).to(input_ids.device))
|
| 423 |
+
if idx_in_extra:
|
| 424 |
+
self.state[cur_batch_index] = 9 # init
|
| 425 |
+
self.loop_state[cur_batch_index] = 0
|
| 426 |
+
else:
|
| 427 |
+
if cur_ids == self.n_discrete_size:
|
| 428 |
+
face_ids[cur_batch_index] = 3
|
| 429 |
+
self.state[cur_batch_index] = 9 # init
|
| 430 |
+
self.loop_state[cur_batch_index] = 0
|
| 431 |
+
else:
|
| 432 |
+
if self.state[cur_batch_index] == 0:
|
| 433 |
+
face_ids[cur_batch_index] = 7 + self.loop_state[cur_batch_index] % 3
|
| 434 |
+
else:
|
| 435 |
+
self.state[cur_batch_index] -= 1
|
| 436 |
+
face_ids[cur_batch_index] = 4 + self.loop_state[cur_batch_index] % 3
|
| 437 |
+
self.loop_state[cur_batch_index] += 1
|
| 438 |
+
|
| 439 |
+
return super().forward(face_ids)
|
| 440 |
+
|
| 441 |
+
def init_state(self, template_tensor):
|
| 442 |
+
batch_size = template_tensor.shape[0]
|
| 443 |
+
self.state = torch.zeros((batch_size, 1), dtype=torch.long, device=template_tensor.device)
|
| 444 |
+
self.state[...] = 9
|
| 445 |
+
self.loop_state = torch.zeros((batch_size, 1), dtype=torch.long, device=template_tensor.device)
|
| 446 |
+
|
| 447 |
class OPTFacePositionalEmbedding(nn.Embedding):
|
| 448 |
"""
|
| 449 |
This module learns positional embeddings up to a fixed maximum size.
|