Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) 2023, Zexin He | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # https://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import torch | |
| import torch.nn as nn | |
| class BasicTransformerBlock(nn.Module): | |
| """ | |
| Transformer block that takes in a cross-attention condition and another modulation vector applied to sub-blocks. | |
| """ | |
| # use attention from torch.nn.MultiHeadAttention | |
| # Block contains a cross-attention layer, a self-attention layer, and a MLP | |
| def __init__( | |
| self, | |
| inner_dim: int, | |
| cond_dim: int, | |
| num_heads: int, | |
| eps: float, | |
| attn_drop: float = 0., | |
| attn_bias: bool = False, | |
| mlp_ratio: float = 4., | |
| mlp_drop: float = 0., | |
| ): | |
| super().__init__() | |
| self.norm1 = nn.LayerNorm(inner_dim) | |
| self.cross_attn = nn.MultiheadAttention( | |
| embed_dim=inner_dim, num_heads=num_heads, kdim=cond_dim, vdim=cond_dim, | |
| dropout=attn_drop, bias=attn_bias, batch_first=True) | |
| self.norm2 = nn.LayerNorm(inner_dim) | |
| self.self_attn = nn.MultiheadAttention( | |
| embed_dim=inner_dim, num_heads=num_heads, | |
| dropout=attn_drop, bias=attn_bias, batch_first=True) | |
| self.norm3 = nn.LayerNorm(inner_dim) | |
| self.mlp = nn.Sequential( | |
| nn.Linear(inner_dim, int(inner_dim * mlp_ratio)), | |
| nn.GELU(), | |
| nn.Dropout(mlp_drop), | |
| nn.Linear(int(inner_dim * mlp_ratio), inner_dim), | |
| nn.Dropout(mlp_drop), | |
| ) | |
| def forward(self, x, cond): | |
| # x: [N, L, D] | |
| # cond: [N, L_cond, D_cond] | |
| x = x + self.cross_attn(self.norm1(x), cond, cond)[0] | |
| before_sa = self.norm2(x) | |
| x = x + self.self_attn(before_sa, before_sa, before_sa)[0] | |
| x = x + self.mlp(self.norm3(x)) | |
| return x | |
| class TriplaneTransformer(nn.Module): | |
| """ | |
| Transformer with condition that generates a triplane representation. | |
| Reference: | |
| Timm: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L486 | |
| """ | |
| def __init__( | |
| self, | |
| inner_dim: int, | |
| image_feat_dim: int, | |
| triplane_low_res: int, | |
| triplane_high_res: int, | |
| triplane_dim: int, | |
| num_layers: int, | |
| num_heads: int, | |
| eps: float = 1e-6, | |
| ): | |
| super().__init__() | |
| # attributes | |
| self.triplane_low_res = triplane_low_res | |
| self.triplane_high_res = triplane_high_res | |
| self.triplane_dim = triplane_dim | |
| # modules | |
| # initialize pos_embed with 1/sqrt(dim) * N(0, 1) | |
| self.pos_embed = nn.Parameter(torch.randn(1, 3*triplane_low_res**2, inner_dim) * (1. / inner_dim) ** 0.5) | |
| self.layers = nn.ModuleList([ | |
| BasicTransformerBlock( | |
| inner_dim=inner_dim, cond_dim=image_feat_dim, num_heads=num_heads, eps=eps) | |
| for _ in range(num_layers) | |
| ]) | |
| self.norm = nn.LayerNorm(inner_dim, eps=eps) | |
| self.deconv = nn.ConvTranspose2d(inner_dim, triplane_dim, kernel_size=2, stride=2, padding=0) | |
| def forward(self, image_feats): | |
| # image_feats: [N, L_cond, D_cond] | |
| N = image_feats.shape[0] | |
| H = W = self.triplane_low_res | |
| L = 3 * H * W | |
| x = self.pos_embed.repeat(N, 1, 1) # [N, L, D] | |
| for layer in self.layers: | |
| x = layer(x, image_feats) | |
| x = self.norm(x) | |
| # separate each plane and apply deconv | |
| x = x.view(N, 3, H, W, -1) | |
| x = torch.einsum('nihwd->indhw', x) # [3, N, D, H, W] | |
| x = x.contiguous().view(3*N, -1, H, W) # [3*N, D, H, W] | |
| x = self.deconv(x) # [3*N, D', H', W'] | |
| x = x.view(3, N, *x.shape[-3:]) # [3, N, D', H', W'] | |
| x = torch.einsum('indhw->nidhw', x) # [N, 3, D', H', W'] | |
| x = x.contiguous() | |
| return x | |