Spaces:
Runtime error
Runtime error
| # source: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/blob/main/src/utils_display.py | |
| from dataclasses import dataclass | |
| import plotly.graph_objects as go | |
| from transformers import AutoConfig | |
| # These classes are for user facing column names, to avoid having to change them | |
| # all around the code when a modif is needed | |
| class ColumnContent: | |
| name: str | |
| type: str | |
| displayed_by_default: bool | |
| hidden: bool = False | |
| def fields(raw_class): | |
| return [ | |
| v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__" | |
| ] | |
| class AutoEvalColumn: # Auto evals column | |
| model_type_symbol = ColumnContent("T", "str", True) | |
| model = ColumnContent("Models", "markdown", True) | |
| ARC = ColumnContent("ARC", "number", True) | |
| HellaSwag = ColumnContent("HellaSwag", "number", True) | |
| MMLU = ColumnContent("MMLU", "number", True) | |
| TruthfulQA = ColumnContent("TruthfulQA", "number", True) | |
| Winogrande = ColumnContent("Winogrande", "number", True) | |
| GSM8K = ColumnContent("GSM8K", "number", True) | |
| dummy = ColumnContent("Models", "str", True) | |
| def model_hyperlink(link, model_name): | |
| return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>' | |
| def make_clickable_names(df): | |
| df["Models"] = df.apply( | |
| lambda row: model_hyperlink(row["Links"], row["Models"]), axis=1 | |
| ) | |
| return df | |
| def styled_error(error): | |
| return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>" | |
| def styled_warning(warn): | |
| return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>" | |
| def styled_message(message): | |
| return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>" | |
| def has_no_nan_values(df, columns): | |
| return df[columns].notna().all(axis=1) | |
| def has_nan_values(df, columns): | |
| return df[columns].isna().any(axis=1) | |
| def is_model_on_hub(model_name: str, revision: str) -> bool: | |
| try: | |
| AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=False) | |
| return True, None | |
| except ValueError: | |
| return ( | |
| False, | |
| "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.", | |
| ) | |
| except Exception as e: | |
| print(f"Could not get the model config from the hub.: {e}") | |
| return False, "was not found on hub!" | |