Spaces:
Sleeping
Sleeping
Fix requ
Browse files- requirements.txt +3 -5
- utils/speech_processor.py +59 -27
requirements.txt
CHANGED
|
@@ -4,9 +4,8 @@ transformers==4.37.2
|
|
| 4 |
torch==2.1.2
|
| 5 |
torchaudio==2.1.2
|
| 6 |
|
| 7 |
-
# Audio processing
|
| 8 |
-
pyannote.audio==3.1.1
|
| 9 |
-
speechbrain==0.5.16
|
| 10 |
librosa==0.10.1
|
| 11 |
pydub==0.25.1
|
| 12 |
|
|
@@ -18,5 +17,4 @@ sentencepiece==0.1.99
|
|
| 18 |
|
| 19 |
# Utils
|
| 20 |
pandas==2.1.4
|
| 21 |
-
markdown==3.5.2
|
| 22 |
-
python-dotenv==1.0.0
|
|
|
|
| 4 |
torch==2.1.2
|
| 5 |
torchaudio==2.1.2
|
| 6 |
|
| 7 |
+
# Audio processing - skip pyannote if causing issues
|
| 8 |
+
# pyannote.audio==3.1.1
|
|
|
|
| 9 |
librosa==0.10.1
|
| 10 |
pydub==0.25.1
|
| 11 |
|
|
|
|
| 17 |
|
| 18 |
# Utils
|
| 19 |
pandas==2.1.4
|
| 20 |
+
markdown==3.5.2
|
|
|
utils/speech_processor.py
CHANGED
|
@@ -10,6 +10,7 @@ import librosa
|
|
| 10 |
import numpy as np
|
| 11 |
from pydub import AudioSegment
|
| 12 |
import tempfile
|
|
|
|
| 13 |
|
| 14 |
class SpeechProcessor:
|
| 15 |
def __init__(self):
|
|
@@ -22,11 +23,15 @@ class SpeechProcessor:
|
|
| 22 |
)
|
| 23 |
|
| 24 |
# Load speaker diarization
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
def process_audio(self, audio_path, language="id"):
|
| 31 |
"""
|
| 32 |
Process audio file untuk ASR dan speaker diarization
|
|
@@ -38,32 +43,59 @@ class SpeechProcessor:
|
|
| 38 |
waveform, sample_rate = torchaudio.load(audio_path)
|
| 39 |
|
| 40 |
# Speaker diarization
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
#
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
for
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
end_sample = int(turn.end * sample_rate)
|
| 50 |
-
segment_waveform = waveform[:, start_sample:end_sample]
|
| 51 |
-
|
| 52 |
-
# ASR on segment
|
| 53 |
-
text = self._transcribe_segment(
|
| 54 |
-
segment_waveform,
|
| 55 |
-
sample_rate,
|
| 56 |
-
language
|
| 57 |
-
)
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
| 65 |
|
| 66 |
-
return
|
| 67 |
|
| 68 |
def _transcribe_segment(self, waveform, sample_rate, language):
|
| 69 |
"""
|
|
|
|
| 10 |
import numpy as np
|
| 11 |
from pydub import AudioSegment
|
| 12 |
import tempfile
|
| 13 |
+
import os # ADD THIS LINE - FIX FOR THE ERROR
|
| 14 |
|
| 15 |
class SpeechProcessor:
|
| 16 |
def __init__(self):
|
|
|
|
| 23 |
)
|
| 24 |
|
| 25 |
# Load speaker diarization
|
| 26 |
+
try:
|
| 27 |
+
self.diarization_pipeline = Pipeline.from_pretrained(
|
| 28 |
+
"pyannote/speaker-diarization-3.1",
|
| 29 |
+
use_auth_token=os.environ.get("HF_TOKEN") # Now os is imported
|
| 30 |
+
)
|
| 31 |
+
except Exception as e:
|
| 32 |
+
print(f"Warning: Could not load diarization model: {e}")
|
| 33 |
+
self.diarization_pipeline = None
|
| 34 |
+
|
| 35 |
def process_audio(self, audio_path, language="id"):
|
| 36 |
"""
|
| 37 |
Process audio file untuk ASR dan speaker diarization
|
|
|
|
| 43 |
waveform, sample_rate = torchaudio.load(audio_path)
|
| 44 |
|
| 45 |
# Speaker diarization
|
| 46 |
+
if self.diarization_pipeline:
|
| 47 |
+
try:
|
| 48 |
+
diarization = self.diarization_pipeline(audio_path)
|
| 49 |
+
|
| 50 |
+
# Process each speaker segment
|
| 51 |
+
transcript_segments = []
|
| 52 |
+
|
| 53 |
+
for turn, _, speaker in diarization.itertracks(yield_label=True):
|
| 54 |
+
# Extract segment audio
|
| 55 |
+
start_sample = int(turn.start * sample_rate)
|
| 56 |
+
end_sample = int(turn.end * sample_rate)
|
| 57 |
+
segment_waveform = waveform[:, start_sample:end_sample]
|
| 58 |
+
|
| 59 |
+
# ASR on segment
|
| 60 |
+
text = self._transcribe_segment(
|
| 61 |
+
segment_waveform,
|
| 62 |
+
sample_rate,
|
| 63 |
+
language
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
transcript_segments.append({
|
| 67 |
+
"start": round(turn.start, 2),
|
| 68 |
+
"end": round(turn.end, 2),
|
| 69 |
+
"speaker": speaker,
|
| 70 |
+
"text": text
|
| 71 |
+
})
|
| 72 |
+
|
| 73 |
+
return self._merge_consecutive_segments(transcript_segments)
|
| 74 |
+
except Exception as e:
|
| 75 |
+
print(f"Diarization failed, falling back to simple transcription: {e}")
|
| 76 |
|
| 77 |
+
# Fallback: simple transcription without diarization
|
| 78 |
+
return self._simple_transcription(waveform, sample_rate, language)
|
| 79 |
+
|
| 80 |
+
def _simple_transcription(self, waveform, sample_rate, language):
|
| 81 |
+
"""Fallback transcription without speaker diarization"""
|
| 82 |
+
# Process in 30-second chunks
|
| 83 |
+
chunk_length = 30 * sample_rate
|
| 84 |
+
segments = []
|
| 85 |
|
| 86 |
+
for i in range(0, waveform.shape[1], chunk_length):
|
| 87 |
+
chunk = waveform[:, i:i + chunk_length]
|
| 88 |
+
text = self._transcribe_segment(chunk, sample_rate, language)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
+
if text.strip():
|
| 91 |
+
segments.append({
|
| 92 |
+
"start": i / sample_rate,
|
| 93 |
+
"end": min((i + chunk_length) / sample_rate, waveform.shape[1] / sample_rate),
|
| 94 |
+
"speaker": "SPEAKER_01",
|
| 95 |
+
"text": text
|
| 96 |
+
})
|
| 97 |
|
| 98 |
+
return segments
|
| 99 |
|
| 100 |
def _transcribe_segment(self, waveform, sample_rate, language):
|
| 101 |
"""
|