File size: 7,215 Bytes
5da9a16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from transformers import (
    AutoTokenizer, 
    AutoModelForSeq2SeqLM,
    AutoModelForTokenClassification,
    pipeline
)
from keybert import KeyBERT
from summarizer import Summarizer
import re
import nltk
nltk.download('punkt')

class TextProcessor:
    def __init__(self):
        # Initialize summarization model
        self.summarizer = Summarizer('bert-base-multilingual-cased')
        
        # Initialize KeyBERT for keyword extraction
        self.kw_model = KeyBERT('paraphrase-multilingual-MiniLM-L12-v2')
        
        # Initialize NER for action item detection
        self.ner_pipeline = pipeline(
            "ner",
            model="cahya/bert-base-indonesian-NER",
            aggregation_strategy="simple"
        )
        
                # Action item patterns
        self.action_patterns = [
            r"akan\s+(\w+)",
            r"harus\s+(\w+)",
            r"perlu\s+(\w+)",
            r"mohon\s+(\w+)",
            r"tolong\s+(\w+)",
            r"segera\s+(\w+)",
            r"follow\s*up",
            r"action\s*item",
            r"to\s*do",
            r"deadline"
        ]
        
        # Decision patterns
        self.decision_patterns = [
            r"(diputuskan|memutuskan)\s+(.+)",
            r"(disepakati|menyepakati)\s+(.+)",
            r"(setuju|persetujuan)\s+(.+)",
            r"keputusan(?:nya)?\s+(.+)",
            r"final(?:isasi)?\s+(.+)"
        ]
    
    def summarize_transcript(self, transcript_segments, ratio=0.3):
        """
        Hierarchical summarization untuk transcript panjang
        """
        # Gabungkan text dari semua segments
        full_text = ' '.join([seg['text'] for seg in transcript_segments])
        
        # Chunking untuk dokumen panjang
        chunks = self._create_chunks(full_text)
        
        if len(chunks) == 1:
            # Direct summarization untuk dokumen pendek
            return self.summarizer(
                chunks[0], 
                ratio=ratio,
                num_sentences=5
            )
        else:
            # Hierarchical summarization
            return self._hierarchical_summarization(chunks, ratio)
    
    def extract_key_information(self, transcript_segments):
        """
        Extract action items, decisions, dan key topics
        """
        full_text = ' '.join([seg['text'] for seg in transcript_segments])
        
        # Extract keywords/topics
        keywords = self.kw_model.extract_keywords(
            full_text,
            keyphrase_ngram_range=(1, 3),
            stop_words='indonesian',
            top_n=10,
            use_mmr=True,
            diversity=0.5
        )
        
        # Extract action items dan decisions
        action_items = []
        decisions = []
        
        for segment in transcript_segments:
            # Check for action items
            if self._is_action_item(segment['text']):
                action_items.append({
                    'text': segment['text'],
                    'speaker': segment['speaker'],
                    'timestamp': f"{segment['start']:.1f}s",
                    'entities': self._extract_entities(segment['text'])
                })
            
            # Check for decisions
            if self._is_decision(segment['text']):
                decisions.append({
                    'text': segment['text'],
                    'speaker': segment['speaker'],
                    'timestamp': f"{segment['start']:.1f}s"
                })
        
        return {
            'keywords': keywords,
            'action_items': action_items,
            'decisions': decisions
        }
    
    def _create_chunks(self, text, max_length=3000):
        """
        Create overlapping chunks for long documents
        """
        sentences = nltk.sent_tokenize(text)
        chunks = []
        current_chunk = []
        current_length = 0
        
        for sentence in sentences:
            sentence_length = len(sentence)
            
            if current_length + sentence_length > max_length and current_chunk:
                chunks.append(' '.join(current_chunk))
                # Keep last 2 sentences for overlap
                current_chunk = current_chunk[-2:] if len(current_chunk) > 2 else []
                current_length = sum(len(s) for s in current_chunk)
            
            current_chunk.append(sentence)
            current_length += sentence_length
        
        if current_chunk:
            chunks.append(' '.join(current_chunk))
        
        return chunks
    
    def _hierarchical_summarization(self, chunks, ratio):
        """
        Two-level summarization for long documents
        """
        # Level 1: Summarize each chunk
        chunk_summaries = []
        for chunk in chunks:
            summary = self.summarizer(
                chunk,
                ratio=0.4,  # Higher ratio for first level
                num_sentences=4
            )
            chunk_summaries.append(summary)
        
        # Level 2: Summarize the summaries
        combined_summary = ' '.join(chunk_summaries)
        final_summary = self.summarizer(
            combined_summary,
            ratio=ratio,
            num_sentences=6
        )
        
        return final_summary
    
    def _is_action_item(self, text):
        """
        Detect if text contains action item
        """
        text_lower = text.lower()
        
        # Check patterns
        for pattern in self.action_patterns:
            if re.search(pattern, text_lower):
                return True
        
        # Check for imperative sentences
        first_word = text.split()[0].lower() if text.split() else ""
        imperative_verbs = [
            'lakukan', 'buat', 'siapkan', 'kirim', 'hubungi',
            'follow', 'prepare', 'send', 'contact', 'create'
        ]
        
        return first_word in imperative_verbs
    
    def _is_decision(self, text):
        """
        Detect if text contains decision
        """
        text_lower = text.lower()
        
        for pattern in self.decision_patterns:
            if re.search(pattern, text_lower):
                return True
        
        return False
    
    def _extract_entities(self, text):
        """
        Extract named entities (person, date, etc)
        """
        entities = self.ner_pipeline(text)
        
        return {
            'persons': [e['word'] for e in entities if e['entity_group'] == 'PER'],
            'organizations': [e['word'] for e in entities if e['entity_group'] == 'ORG'],
            'dates': self._extract_dates(text)
        }
    
    def _extract_dates(self, text):
        """
        Extract date mentions
        """
        date_patterns = [
            r'\d{1,2}[-/]\d{1,2}[-/]\d{2,4}',
            r'(senin|selasa|rabu|kamis|jumat|sabtu|minggu)',
            r'(besok|lusa|minggu\s+depan|bulan\s+depan)',
            r'(januari|februari|maret|april|mei|juni|juli|agustus|september|oktober|november|desember)'
        ]
        
        dates = []
        for pattern in date_patterns:
            matches = re.findall(pattern, text.lower())
            dates.extend(matches)
        
        return dates