# original source takes from https://github.com/jik876/hifi-gan/ # MIT License # # Copyright (c) 2020 Jungil Kong # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import math import torch import torch.nn.functional as F import torch.nn as nn from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm from hifigan_utils import init_weights, get_padding LRELU_SLOPE = 0.1 class GaussianBlurAugmentation(nn.Module): def __init__(self, kernel_size, sigmas, p_blurring): super(GaussianBlurAugmentation, self).__init__() self.kernel_size = kernel_size self.sigmas = sigmas kernels = self.initialize_kernels(kernel_size, sigmas) self.register_buffer("kernels", kernels) self.p_blurring = p_blurring self.conv = F.conv2d def initialize_kernels(self, kernel_size, sigmas): mesh_grids = torch.meshgrid( [torch.arange(size, dtype=torch.float32) for size in kernel_size] ) kernels = [] for sigma in sigmas: kernel = 1 sigma = [sigma] * len(kernel_size) for size, std, mgrid in zip(kernel_size, sigma, mesh_grids): mean = (size - 1) / 2 kernel *= ( 1 / (std * math.sqrt(2 * math.pi)) * torch.exp(-(((mgrid - mean) / std) ** 2) / 2) ) # Make sure sum of values in gaussian kernel equals 1. kernel = kernel / torch.sum(kernel) # Reshape to depthwise convolutional weight kernel = kernel.view(1, 1, *kernel.size()) kernel = kernel.repeat(1, *[1] * (kernel.dim() - 1)) kernels.append(kernel[None]) kernels = torch.cat(kernels) return kernels def forward(self, x): if torch.rand(1)[0] > self.p_blurring: return x else: i = torch.randint(len(self.kernels), (1,))[0] kernel = self.kernels[i] pad = int((self.kernel_size[0] - 1) / 2) x = F.pad(x[:, None], (pad, pad, pad, pad), mode="reflect") x = self.conv(x, weight=kernel)[:, 0] return x class ResBlock1(torch.nn.Module): __constants__ = ["lrelu_slope"] def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)): super(ResBlock1, self).__init__() self.h = h self.lrelu_slope = LRELU_SLOPE self.convs1 = nn.ModuleList( [ weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[2], padding=get_padding(kernel_size, dilation[2]), ) ), ] ) self.convs1.apply(init_weights) self.convs2 = nn.ModuleList( [ weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), ] ) self.convs2.apply(init_weights) def forward(self, x): for c1, c2 in zip(self.convs1, self.convs2): xt = F.leaky_relu(x, self.lrelu_slope) xt = c1(xt) xt = F.leaky_relu(xt, self.lrelu_slope) xt = c2(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs1: remove_weight_norm(l) for l in self.convs2: remove_weight_norm(l) class ResBlock2(torch.nn.Module): __constants__ = ["lrelu_slope"] def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)): super(ResBlock2, self).__init__() self.h = h self.convs = nn.ModuleList( [ weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]), ) ), ] ) self.convs.apply(init_weights) self.lrelu_slope = LRELU_SLOPE def forward(self, x): for c in self.convs: xt = F.leaky_relu(x, self.lrelu_slope) xt = c(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs: remove_weight_norm(l) class Generator(torch.nn.Module): __constants__ = ["lrelu_slope", "num_kernels", "num_upsamples", "p_blur"] def __init__(self, h): super(Generator, self).__init__() self.num_kernels = len(h.resblock_kernel_sizes) self.num_upsamples = len(h.upsample_rates) self.conv_pre = weight_norm( Conv1d(80, h.upsample_initial_channel, 7, 1, padding=3) ) self.p_blur = h.gaussian_blur["p_blurring"] self.gaussian_blur_fn = None if self.p_blur > 0.0: self.gaussian_blur_fn = GaussianBlurAugmentation( h.gaussian_blur["kernel_size"], h.gaussian_blur["sigmas"], self.p_blur ) else: self.gaussian_blur_fn = nn.Identity() self.lrelu_slope = LRELU_SLOPE resblock = ResBlock1 if h.resblock == "1" else ResBlock2 self.ups = nn.ModuleList() for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)): self.ups.append( weight_norm( ConvTranspose1d( h.upsample_initial_channel // (2**i), h.upsample_initial_channel // (2 ** (i + 1)), k, u, padding=(k - u) // 2, ) ) ) self.resblocks = nn.ModuleList() for i in range(len(self.ups)): resblock_list = nn.ModuleList() ch = h.upsample_initial_channel // (2 ** (i + 1)) for j, (k, d) in enumerate( zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes) ): resblock_list.append(resblock(h, ch, k, d)) self.resblocks.append(resblock_list) self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) self.ups.apply(init_weights) self.conv_post.apply(init_weights) def load_state_dict(self, state_dict): new_state_dict = {} for k, v in state_dict.items(): new_k = k if "resblocks" in k: parts = k.split(".") # only do this is the checkpoint type is older if len(parts) == 5: layer = int(parts[1]) new_layer = f"{layer // 3}.{layer % 3}" new_k = f"resblocks.{new_layer}.{'.'.join(parts[2:])}" new_state_dict[new_k] = v super().load_state_dict(new_state_dict) def forward(self, x): if self.p_blur > 0.0: x = self.gaussian_blur_fn(x) x = self.conv_pre(x) for upsample_layer, resblock_group in zip(self.ups, self.resblocks): x = F.leaky_relu(x, self.lrelu_slope) x = upsample_layer(x) xs = torch.zeros(x.shape, dtype=x.dtype, device=x.device) for resblock in resblock_group: xs += resblock(x) x = xs / self.num_kernels x = F.leaky_relu(x) x = self.conv_post(x) x = torch.tanh(x) return x def remove_weight_norm(self): print("Removing weight norm...") for l in self.ups: remove_weight_norm(l) for group in self.resblocks: for block in group: block.remove_weight_norm() remove_weight_norm(self.conv_pre) remove_weight_norm(self.conv_post) class DiscriminatorP(torch.nn.Module): __constants__ = ["LRELU_SLOPE"] def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): super(DiscriminatorP, self).__init__() self.period = period norm_f = weight_norm if use_spectral_norm == False else spectral_norm self.convs = nn.ModuleList( [ norm_f( Conv2d( 1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0), ) ), norm_f( Conv2d( 32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0), ) ), norm_f( Conv2d( 128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0), ) ), norm_f( Conv2d( 512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0), ) ), norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))), ] ) self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) def forward(self, x): fmap = [] # 1d to 2d b, c, t = x.shape if t % self.period != 0: # pad first n_pad = self.period - (t % self.period) x = F.pad(x, (0, n_pad), "reflect") t = t + n_pad x = x.view(b, c, t // self.period, self.period) for l in self.convs: x = l(x) x = F.leaky_relu(x, LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class MultiPeriodDiscriminator(torch.nn.Module): def __init__(self): super(MultiPeriodDiscriminator, self).__init__() self.discriminators = nn.ModuleList( [ DiscriminatorP(2), DiscriminatorP(3), DiscriminatorP(5), DiscriminatorP(7), DiscriminatorP(11), ] ) def forward(self, y, y_hat): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs class DiscriminatorS(torch.nn.Module): __constants__ = ["LRELU_SLOPE"] def __init__(self, use_spectral_norm=False): super(DiscriminatorS, self).__init__() norm_f = weight_norm if use_spectral_norm == False else spectral_norm self.convs = nn.ModuleList( [ norm_f(Conv1d(1, 128, 15, 1, padding=7)), norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)), norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)), norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)), norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)), norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)), norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), ] ) self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) def forward(self, x): fmap = [] for l in self.convs: x = l(x) x = F.leaky_relu(x, LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class MultiScaleDiscriminator(torch.nn.Module): def __init__(self): super(MultiScaleDiscriminator, self).__init__() self.discriminators = nn.ModuleList( [ DiscriminatorS(use_spectral_norm=True), DiscriminatorS(), DiscriminatorS(), ] ) self.meanpools = nn.ModuleList( [AvgPool1d(4, 2, padding=2), AvgPool1d(4, 2, padding=2)] ) def forward(self, y, y_hat): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): if i != 0: y = self.meanpools[i - 1](y) y_hat = self.meanpools[i - 1](y_hat) y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs def feature_loss(fmap_r, fmap_g): loss = 0 for dr, dg in zip(fmap_r, fmap_g): for rl, gl in zip(dr, dg): loss += torch.mean(torch.abs(rl - gl)) return loss * 2 def discriminator_loss(disc_real_outputs, disc_generated_outputs): loss = 0 r_losses = [] g_losses = [] for dr, dg in zip(disc_real_outputs, disc_generated_outputs): r_loss = torch.mean((1 - dr) ** 2) g_loss = torch.mean(dg**2) loss += r_loss + g_loss r_losses.append(r_loss.item()) g_losses.append(g_loss.item()) return loss, r_losses, g_losses def generator_loss(disc_outputs): loss = 0 gen_losses = [] for dg in disc_outputs: l = torch.mean((1 - dg) ** 2) gen_losses.append(l) loss += l return loss, gen_losses