Spaces:
Running
on
Zero
Running
on
Zero
Sync
Browse files
README.md
CHANGED
@@ -8,27 +8,15 @@ sdk_version: 5.38.0
|
|
8 |
pinned: false
|
9 |
---
|
10 |
|
|
|
|
|
11 |
## Install
|
12 |
|
13 |
-
```
|
14 |
uv venv --python 3.10
|
15 |
|
16 |
source .venv/bin/activate
|
17 |
|
18 |
uv pip install -r requirements.txt
|
19 |
-
|
20 |
-
# in development mode
|
21 |
uv pip install -r requirements-dev.txt
|
22 |
```
|
23 |
-
|
24 |
-
## Build image
|
25 |
-
|
26 |
-
```shell
|
27 |
-
docker build -t en-uk-translator .
|
28 |
-
```
|
29 |
-
|
30 |
-
## Run
|
31 |
-
|
32 |
-
```shell
|
33 |
-
docker run -it --rm -p 8888:7860 en-uk-translator
|
34 |
-
```
|
|
|
8 |
pinned: false
|
9 |
---
|
10 |
|
11 |
+
Translate from English to Ukrainian.
|
12 |
+
|
13 |
## Install
|
14 |
|
15 |
+
```bash
|
16 |
uv venv --python 3.10
|
17 |
|
18 |
source .venv/bin/activate
|
19 |
|
20 |
uv pip install -r requirements.txt
|
|
|
|
|
21 |
uv pip install -r requirements-dev.txt
|
22 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -1,10 +1,6 @@
|
|
1 |
import sys
|
2 |
import time
|
3 |
|
4 |
-
from importlib.metadata import version
|
5 |
-
from gradio.utils import is_zero_gpu_space
|
6 |
-
from gradio.themes import Base
|
7 |
-
|
8 |
try:
|
9 |
import spaces
|
10 |
except ImportError:
|
@@ -14,6 +10,11 @@ import torch
|
|
14 |
import torchaudio
|
15 |
import gradio as gr
|
16 |
import torchaudio.transforms as T
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
from transformers import (
|
19 |
AutoModelForCausalLM,
|
@@ -122,18 +123,6 @@ This space translates your text, audio, image from English to Ukrainian. Also, c
|
|
122 |
""".strip()
|
123 |
|
124 |
|
125 |
-
translated_text_value = """
|
126 |
-
Choose an example below the Translate button or type your text.
|
127 |
-
""".strip()
|
128 |
-
|
129 |
-
translated_audio_value = """
|
130 |
-
Choose an example below the Translate button or upload your audio.
|
131 |
-
""".strip()
|
132 |
-
|
133 |
-
translated_image_value = """
|
134 |
-
Choose an example below the Translate button or upload your image.
|
135 |
-
""".strip()
|
136 |
-
|
137 |
tech_env = f"""
|
138 |
#### Environment
|
139 |
|
@@ -155,6 +144,39 @@ tech_libraries = f"""
|
|
155 |
""".strip()
|
156 |
|
157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
@spaces.GPU
|
159 |
def inference_text(text, progress=gr.Progress()):
|
160 |
if not text:
|
@@ -176,36 +198,7 @@ def inference_text(text, progress=gr.Progress()):
|
|
176 |
non_empty_sentences, desc="Translating...", unit="sentence"
|
177 |
):
|
178 |
t0 = time.time()
|
179 |
-
|
180 |
-
prompt = "Translate the text to Ukrainian:\n" + sentence
|
181 |
-
|
182 |
-
input_ids = tokenizer.apply_chat_template(
|
183 |
-
[{"role": "user", "content": prompt}],
|
184 |
-
add_generation_prompt=True,
|
185 |
-
return_tensors="pt",
|
186 |
-
tokenize=True,
|
187 |
-
).to(model.device)
|
188 |
-
|
189 |
-
output = model.generate(
|
190 |
-
input_ids,
|
191 |
-
max_new_tokens=2048,
|
192 |
-
# Greedy Search
|
193 |
-
do_sample=False,
|
194 |
-
repetition_penalty=1.05,
|
195 |
-
# Sampling
|
196 |
-
# do_sample=True,
|
197 |
-
# temperature=0.1,
|
198 |
-
# # top_k=1,
|
199 |
-
# min_p=0.9,
|
200 |
-
# repetition_penalty=1.05,
|
201 |
-
)
|
202 |
-
|
203 |
-
prompt_len = input_ids.shape[1]
|
204 |
-
generated_tokens = output[:, prompt_len:]
|
205 |
-
translated_text = tokenizer.batch_decode(
|
206 |
-
generated_tokens, skip_special_tokens=True
|
207 |
-
)[0]
|
208 |
-
|
209 |
elapsed_time = round(time.time() - t0, 2)
|
210 |
|
211 |
translated_text = translated_text.strip()
|
@@ -219,15 +212,7 @@ def inference_text(text, progress=gr.Progress()):
|
|
219 |
|
220 |
gr.Info("Finished!", duration=2)
|
221 |
|
222 |
-
|
223 |
-
|
224 |
-
for result in results:
|
225 |
-
result_texts.append(f"{result['translated_text']}\n")
|
226 |
-
|
227 |
-
sum_elapsed_text = sum([result["elapsed_time"] for result in results])
|
228 |
-
print(f"Elapsed time: {round(sum_elapsed_text, 4)} seconds")
|
229 |
-
|
230 |
-
return "\n".join(result_texts)
|
231 |
|
232 |
|
233 |
@spaces.GPU
|
@@ -287,39 +272,9 @@ def inference_audio(audio, progress=gr.Progress()):
|
|
287 |
non_empty_sentences, desc="Translating...", unit="sentence"
|
288 |
):
|
289 |
t0 = time.time()
|
290 |
-
|
291 |
-
prompt = "Translate the text to Ukrainian:\n" + sentence
|
292 |
-
|
293 |
-
input_ids = tokenizer.apply_chat_template(
|
294 |
-
[{"role": "user", "content": prompt}],
|
295 |
-
add_generation_prompt=True,
|
296 |
-
return_tensors="pt",
|
297 |
-
tokenize=True,
|
298 |
-
).to(model.device)
|
299 |
-
|
300 |
-
output = model.generate(
|
301 |
-
input_ids,
|
302 |
-
max_new_tokens=2048,
|
303 |
-
# Greedy Search
|
304 |
-
do_sample=False,
|
305 |
-
repetition_penalty=1.05,
|
306 |
-
# Sampling
|
307 |
-
# do_sample=True,
|
308 |
-
# temperature=0.1,
|
309 |
-
# # top_k=1,
|
310 |
-
# min_p=0.9,
|
311 |
-
# repetition_penalty=1.05,
|
312 |
-
)
|
313 |
-
|
314 |
-
prompt_len = input_ids.shape[1]
|
315 |
-
generated_tokens = output[:, prompt_len:]
|
316 |
-
translated_text = tokenizer.batch_decode(
|
317 |
-
generated_tokens, skip_special_tokens=True
|
318 |
-
)[0]
|
319 |
-
|
320 |
elapsed_time = round(time.time() - t0, 2)
|
321 |
|
322 |
-
translated_text = translated_text.strip()
|
323 |
results.append(
|
324 |
{
|
325 |
"sentence": sentence,
|
@@ -330,15 +285,7 @@ def inference_audio(audio, progress=gr.Progress()):
|
|
330 |
|
331 |
gr.Info("Finished!", duration=2)
|
332 |
|
333 |
-
|
334 |
-
|
335 |
-
for result in results:
|
336 |
-
result_texts.append(f"{result['sentence']}: {result['translated_text']}\n")
|
337 |
-
|
338 |
-
sum_elapsed_text = sum([result["elapsed_time"] for result in results])
|
339 |
-
print(f"Elapsed time: {round(sum_elapsed_text, 4)} seconds")
|
340 |
-
|
341 |
-
return "\n".join(result_texts)
|
342 |
|
343 |
|
344 |
@spaces.GPU
|
@@ -365,39 +312,9 @@ def inference_image(image, progress=gr.Progress()):
|
|
365 |
|
366 |
for sentence in progress.tqdm(sentences, desc="Translating...", unit="sentence"):
|
367 |
t0 = time.time()
|
368 |
-
|
369 |
-
prompt = "Translate the text to Ukrainian:\n" + sentence
|
370 |
-
|
371 |
-
input_ids = tokenizer.apply_chat_template(
|
372 |
-
[{"role": "user", "content": prompt}],
|
373 |
-
add_generation_prompt=True,
|
374 |
-
return_tensors="pt",
|
375 |
-
tokenize=True,
|
376 |
-
).to(model.device)
|
377 |
-
|
378 |
-
output = model.generate(
|
379 |
-
input_ids,
|
380 |
-
max_new_tokens=2048,
|
381 |
-
# Greedy Search
|
382 |
-
do_sample=False,
|
383 |
-
repetition_penalty=1.05,
|
384 |
-
# Sampling
|
385 |
-
# do_sample=True,
|
386 |
-
# temperature=0.1,
|
387 |
-
# # top_k=1,
|
388 |
-
# min_p=0.9,
|
389 |
-
# repetition_penalty=1.05,
|
390 |
-
)
|
391 |
-
|
392 |
-
prompt_len = input_ids.shape[1]
|
393 |
-
generated_tokens = output[:, prompt_len:]
|
394 |
-
translated_text = tokenizer.batch_decode(
|
395 |
-
generated_tokens, skip_special_tokens=True
|
396 |
-
)[0]
|
397 |
-
|
398 |
elapsed_time = round(time.time() - t0, 2)
|
399 |
|
400 |
-
translated_text = translated_text.strip()
|
401 |
results.append(
|
402 |
{
|
403 |
"sentence": sentence,
|
@@ -408,15 +325,7 @@ def inference_image(image, progress=gr.Progress()):
|
|
408 |
|
409 |
gr.Info("Finished!", duration=2)
|
410 |
|
411 |
-
|
412 |
-
|
413 |
-
for result in results:
|
414 |
-
result_texts.append(f"> {result['sentence']}: {result['translated_text']}\n")
|
415 |
-
|
416 |
-
sum_elapsed_text = sum([result["elapsed_time"] for result in results])
|
417 |
-
print(f"Elapsed time: {round(sum_elapsed_text, 4)} seconds")
|
418 |
-
|
419 |
-
return "\n".join(result_texts)
|
420 |
|
421 |
|
422 |
def create_app():
|
@@ -430,11 +339,8 @@ def create_app():
|
|
430 |
gr.Markdown(description_head)
|
431 |
gr.Markdown("## Usage")
|
432 |
|
433 |
-
translated_text = gr.
|
434 |
label="Translated text",
|
435 |
-
placeholder=translated_text_value,
|
436 |
-
show_copy_button=True,
|
437 |
-
lines=5,
|
438 |
)
|
439 |
|
440 |
text = gr.Textbox(label="Text", autofocus=True, lines=5)
|
@@ -457,11 +363,8 @@ def create_audio_app():
|
|
457 |
gr.Markdown(description_head)
|
458 |
gr.Markdown("## Usage")
|
459 |
|
460 |
-
translated_text = gr.
|
461 |
label="Translated text",
|
462 |
-
placeholder=translated_audio_value,
|
463 |
-
show_copy_button=True,
|
464 |
-
lines=5,
|
465 |
)
|
466 |
|
467 |
audio = gr.Audio(label="Audio file", sources="upload", type="filepath")
|
@@ -486,11 +389,8 @@ def create_image_app():
|
|
486 |
gr.Markdown(description_head)
|
487 |
gr.Markdown("## Usage")
|
488 |
|
489 |
-
translated_text = gr.
|
490 |
label="Translated text",
|
491 |
-
placeholder=translated_image_value,
|
492 |
-
show_copy_button=True,
|
493 |
-
lines=5,
|
494 |
)
|
495 |
|
496 |
image = gr.Image(label="Image file", sources="upload", type="filepath")
|
|
|
1 |
import sys
|
2 |
import time
|
3 |
|
|
|
|
|
|
|
|
|
4 |
try:
|
5 |
import spaces
|
6 |
except ImportError:
|
|
|
10 |
import torchaudio
|
11 |
import gradio as gr
|
12 |
import torchaudio.transforms as T
|
13 |
+
import polars as pl
|
14 |
+
|
15 |
+
from importlib.metadata import version
|
16 |
+
from gradio.utils import is_zero_gpu_space
|
17 |
+
from gradio.themes import Base
|
18 |
|
19 |
from transformers import (
|
20 |
AutoModelForCausalLM,
|
|
|
123 |
""".strip()
|
124 |
|
125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
tech_env = f"""
|
127 |
#### Environment
|
128 |
|
|
|
144 |
""".strip()
|
145 |
|
146 |
|
147 |
+
def translate(text: str) -> str:
|
148 |
+
prompt = "Translate the text to Ukrainian:\n" + text
|
149 |
+
|
150 |
+
input_ids = tokenizer.apply_chat_template(
|
151 |
+
[{"role": "user", "content": prompt}],
|
152 |
+
add_generation_prompt=True,
|
153 |
+
return_tensors="pt",
|
154 |
+
tokenize=True,
|
155 |
+
).to(model.device)
|
156 |
+
|
157 |
+
output = model.generate(
|
158 |
+
input_ids,
|
159 |
+
max_new_tokens=2048,
|
160 |
+
# Greedy Search
|
161 |
+
do_sample=False,
|
162 |
+
repetition_penalty=1.05,
|
163 |
+
# Sampling
|
164 |
+
# do_sample=True,
|
165 |
+
# temperature=0.1,
|
166 |
+
# # top_k=1,
|
167 |
+
# min_p=0.9,
|
168 |
+
# repetition_penalty=1.05,
|
169 |
+
)
|
170 |
+
|
171 |
+
prompt_len = input_ids.shape[1]
|
172 |
+
generated_tokens = output[:, prompt_len:]
|
173 |
+
translated_text = tokenizer.batch_decode(
|
174 |
+
generated_tokens, skip_special_tokens=True
|
175 |
+
)[0]
|
176 |
+
|
177 |
+
return translated_text.strip()
|
178 |
+
|
179 |
+
|
180 |
@spaces.GPU
|
181 |
def inference_text(text, progress=gr.Progress()):
|
182 |
if not text:
|
|
|
198 |
non_empty_sentences, desc="Translating...", unit="sentence"
|
199 |
):
|
200 |
t0 = time.time()
|
201 |
+
translated_text = translate(sentence)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
elapsed_time = round(time.time() - t0, 2)
|
203 |
|
204 |
translated_text = translated_text.strip()
|
|
|
212 |
|
213 |
gr.Info("Finished!", duration=2)
|
214 |
|
215 |
+
return pl.DataFrame(results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
|
217 |
|
218 |
@spaces.GPU
|
|
|
272 |
non_empty_sentences, desc="Translating...", unit="sentence"
|
273 |
):
|
274 |
t0 = time.time()
|
275 |
+
translated_text = translate(sentence)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
elapsed_time = round(time.time() - t0, 2)
|
277 |
|
|
|
278 |
results.append(
|
279 |
{
|
280 |
"sentence": sentence,
|
|
|
285 |
|
286 |
gr.Info("Finished!", duration=2)
|
287 |
|
288 |
+
return pl.DataFrame(results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
|
290 |
|
291 |
@spaces.GPU
|
|
|
312 |
|
313 |
for sentence in progress.tqdm(sentences, desc="Translating...", unit="sentence"):
|
314 |
t0 = time.time()
|
315 |
+
translated_text = translate(sentence)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
elapsed_time = round(time.time() - t0, 2)
|
317 |
|
|
|
318 |
results.append(
|
319 |
{
|
320 |
"sentence": sentence,
|
|
|
325 |
|
326 |
gr.Info("Finished!", duration=2)
|
327 |
|
328 |
+
return pl.DataFrame(results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
|
330 |
|
331 |
def create_app():
|
|
|
339 |
gr.Markdown(description_head)
|
340 |
gr.Markdown("## Usage")
|
341 |
|
342 |
+
translated_text = gr.DataFrame(
|
343 |
label="Translated text",
|
|
|
|
|
|
|
344 |
)
|
345 |
|
346 |
text = gr.Textbox(label="Text", autofocus=True, lines=5)
|
|
|
363 |
gr.Markdown(description_head)
|
364 |
gr.Markdown("## Usage")
|
365 |
|
366 |
+
translated_text = gr.DataFrame(
|
367 |
label="Translated text",
|
|
|
|
|
|
|
368 |
)
|
369 |
|
370 |
audio = gr.Audio(label="Audio file", sources="upload", type="filepath")
|
|
|
389 |
gr.Markdown(description_head)
|
390 |
gr.Markdown("## Usage")
|
391 |
|
392 |
+
translated_text = gr.DataFrame(
|
393 |
label="Translated text",
|
|
|
|
|
|
|
394 |
)
|
395 |
|
396 |
image = gr.Image(label="Image file", sources="upload", type="filepath")
|
justfile
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
default:
|
2 |
+
ruff check
|
3 |
+
ruff format
|
requirements.txt
CHANGED
@@ -8,3 +8,5 @@ torchaudio
|
|
8 |
accelerate
|
9 |
|
10 |
python-doctr
|
|
|
|
|
|
8 |
accelerate
|
9 |
|
10 |
python-doctr
|
11 |
+
|
12 |
+
polars
|