import streamlit as st import requests import cloudinary import cloudinary.uploader from PIL import Image import io from google_auth_oauthlib.flow import InstalledAppFlow from googleapiclient.discovery import build import os # Configure Cloudinary with your credentials cloudinary.config( cloud_name="dvuowbmrz", api_key="177664162661619", api_secret="qVMYel17N_C5QUUUuBIuatB5tq0" ) # # # Set up OAuth2 client details # CLIENT_SECRET_FILE = 'client_secret.json' # SCOPES = ['https://www.googleapis.com/auth/drive.metadata.readonly'] # Adjust scopes as needed # # # Set up Streamlit app # #st.title("Google Authentication Demo") # # # Check if the user is authenticated # if 'credentials' not in st.session_state: # #st.write("WELCOME") # flow = InstalledAppFlow.from_client_secrets_file(CLIENT_SECRET_FILE, SCOPES) # credentials = flow.run_local_server(port=8501, authorization_prompt_message='') # # # Save credentials to a file for future use (optional) # with open('token.json', 'w') as token_file: # token_file.write(credentials.to_json()) # # st.session_state.credentials = credentials # st.success("Authentication successful. You can now use the app.") # # # Use authenticated credentials to interact with Google API # credentials = st.session_state.credentials # service = build('drive', 'v3', credentials=credentials) # # # Fetch user's name from Google API # try: # user_info = service.about().get(fields="user").execute() # user_name = user_info["user"]["displayName"] # #st.header("Google Profile Information") # st.markdown(f"
Userame: {user_name.upper()}
", unsafe_allow_html=True) # except Exception as e: # st.error(f"Error fetching user profile: {str(e)}") # # # Your app's functionality goes here # # # Display Google Drive contents # # st.header("Google Drive Contents") # # results = service.files().list(pageSize=10).execute() # # files = results.get('files', []) # # if not files: # # st.write('No files found in Google Drive.') # # else: # # st.write('Files in Google Drive:') # # for file in files: # # st.write(f"- {file['name']} ({file['mimeType']})") # # # Logout button # if st.button("Logout"): # del st.session_state.credentials # os.remove("token_dir/token.json") # Remove the token file # # Set up Hugging Face API endpoint API_URL = "https://api-inference.huggingface.co/models/CompVis/stable-diffusion-v1-4" headers = {"Authorization": "Bearer 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"} #@title Computer ko aang lagani ho to hi show code click karke ched chad karna #!pip install git+https://github.com/openai/glide-text2im from PIL import Image from IPython.display import display import torch as th from glide_text2im.download import load_checkpoint from glide_text2im.model_creation import ( create_model_and_diffusion, model_and_diffusion_defaults, model_and_diffusion_defaults_upsampler ) # This notebook supports both CPU and GPU. # On CPU, generating one sample may take on the order of 20 minutes. # On a GPU, it should be under a minute. has_cuda = th.cuda.is_available() device = th.device('cpu' if not has_cuda else 'cuda') # Create base model. options = model_and_diffusion_defaults() options['use_fp16'] = has_cuda options['timestep_respacing'] = '100' # use 100 diffusion steps for fast sampling model, diffusion = create_model_and_diffusion(**options) model.eval() if has_cuda: model.convert_to_fp16() model.to(device) model.load_state_dict(load_checkpoint('base', device)) print('total base parameters', sum(x.numel() for x in model.parameters())) # Create upsampler model. options_up = model_and_diffusion_defaults_upsampler() options_up['use_fp16'] = has_cuda options_up['timestep_respacing'] = 'fast27' # use 27 diffusion steps for very fast sampling model_up, diffusion_up = create_model_and_diffusion(**options_up) model_up.eval() if has_cuda: model_up.convert_to_fp16() model_up.to(device) model_up.load_state_dict(load_checkpoint('upsample', device)) print('total upsampler parameters', sum(x.numel() for x in model_up.parameters())) def show_images(batch: th.Tensor): """ Display a batch of images inline. """ scaled = ((batch + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu() reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3]) display(Image.fromarray(reshaped.numpy())) def query_model_with_image(image_description): # Sampling parameters # image_description = "dog in the field" #@param {type:"string"} # image_description = "" batch_size = 1 #@param {type:"integer"} guidance_scale = 8.0 # Tune this parameter to control the sharpness of 256x256 images. # A value of 1.0 is sharper, but sometimes results in grainy artifacts. upsample_temp = 0.997 ############################## # Sample from the base model # ############################## # Create the text tokens to feed to the model. tokens = model.tokenizer.encode(image_description) tokens, mask = model.tokenizer.padded_tokens_and_mask( tokens, options['text_ctx'] ) # Create the classifier-free guidance tokens (empty) full_batch_size = batch_size * 2 uncond_tokens, uncond_mask = model.tokenizer.padded_tokens_and_mask( [], options['text_ctx'] ) # Pack the tokens together into model kwargs. model_kwargs = dict( tokens=th.tensor( [tokens] * batch_size + [uncond_tokens] * batch_size, device=device ), mask=th.tensor( [mask] * batch_size + [uncond_mask] * batch_size, dtype=th.bool, device=device, ), ) # Create a classifier-free guidance sampling function def model_fn(x_t, ts, **kwargs): half = x_t[: len(x_t) // 2] combined = th.cat([half, half], dim=0) model_out = model(combined, ts, **kwargs) eps, rest = model_out[:, :3], model_out[:, 3:] cond_eps, uncond_eps = th.split(eps, len(eps) // 2, dim=0) half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps) eps = th.cat([half_eps, half_eps], dim=0) return th.cat([eps, rest], dim=1) # Sample from the base model. model.del_cache() samples = diffusion.p_sample_loop( model_fn, (full_batch_size, 3, options["image_size"], options["image_size"]), device=device, clip_denoised=True, progress=True, model_kwargs=model_kwargs, cond_fn=None, )[:batch_size] model.del_cache() # Show the output show_images(samples) ############################## # Upsample the 64x64 samples # ############################## tokens = model_up.tokenizer.encode(image_description) tokens, mask = model_up.tokenizer.padded_tokens_and_mask( tokens, options_up['text_ctx'] ) # Create the model conditioning dict. model_kwargs = dict( # Low-res image to upsample. low_res=((samples+1)*127.5).round()/127.5 - 1, # Text tokens tokens=th.tensor( [tokens] * batch_size, device=device ), mask=th.tensor( [mask] * batch_size, dtype=th.bool, device=device, ), ) # Sample from the base model. model_up.del_cache() up_shape = (batch_size, 3, options_up["image_size"], options_up["image_size"]) image = diffusion_up.ddim_sample_loop( model_up, up_shape, noise=th.randn(up_shape, device=device) * upsample_temp, device=device, clip_denoised=True, progress=True, model_kwargs=model_kwargs, cond_fn=None, )[:batch_size] model_up.del_cache() # Show the output show_images(image) return image def upload_to_cloudinary(image, prompt_text): image_data = io.BytesIO() image.save(image_data, format="JPEG") image_data.seek(0) upload_result = cloudinary.uploader.upload( image_data, folder="compvis_app", public_id=prompt_text ) return upload_result["secure_url"] def fetch_latest_images_from_cloudinary(num_images=9): # Use the Cloudinary Admin API to list resources url = f"https://api.cloudinary.com/v1_1/{cloudinary.config().cloud_name}/resources/image" params = { "max_results": num_images, "type": "upload" } response = requests.get(url, params=params, auth=(cloudinary.config().api_key, cloudinary.config().api_secret)) if response.status_code == 200: images = response.json()["resources"] else: images = [] return images # Streamlit app st.markdown("""""", unsafe_allow_html=True) st.title("Text to Image Generator") image_description = st.text_input("Enter the image description") if st.button("Generate Image"): processed_image = query_model_with_image(image_description) st.image(processed_image, use_column_width=True, output_format="JPEG") # Use use_column_width=True st.session_state.processed_image = processed_image st.session_state.image_description = image_description st.write("Image generated.") if st.button("Upload"): if 'processed_image' in st.session_state: uploaded_url = upload_to_cloudinary(st.session_state.processed_image, st.session_state.image_description) st.write("Image uploaded to Cloudinary. Prompt Text:", st.session_state.image_description) st.write("Image URL on Cloudinary:", uploaded_url) else: st.write("Generate an image first before uploading.") # Fetch and display the latest images from Cloudinary st.header("Latest Images created") # Use the 'fetch_latest_images_from_cloudinary' function to get the latest images latest_images = fetch_latest_images_from_cloudinary() # Define the number of columns in the grid num_columns = 3 # You can adjust this number as needed # Calculate the width for each column column_width = f"calc(33.33% - {10}px)" # Adjust the width and margin as needed # Add CSS styling for the grid and rounded images st.markdown( f""" """, unsafe_allow_html=True, ) # Create the responsive grid layout st.markdown('