Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import math | |
from .op import (FusedLeakyReLU, fused_leaky_relu, upfirdn2d) | |
import numpy as np | |
def make_kernel(k): | |
k = torch.tensor(k, dtype=torch.float32) | |
if k.ndim == 1: | |
k = k[None, :] * k[:, None] | |
k /= k.sum() | |
return k | |
class Blur(nn.Module): | |
def __init__(self, kernel, pad, upsample_factor=1): | |
super().__init__() | |
kernel = make_kernel(kernel) | |
if upsample_factor > 1: | |
kernel = kernel * (upsample_factor ** 2) | |
self.register_buffer('kernel', kernel) | |
self.pad = pad | |
def forward(self, input): | |
return upfirdn2d(input, self.kernel, pad=self.pad) | |
class ScaledLeakyReLU(nn.Module): | |
def __init__(self, negative_slope=0.2): | |
super().__init__() | |
self.negative_slope = negative_slope | |
def forward(self, input): | |
return F.leaky_relu(input, negative_slope=self.negative_slope) | |
class EqualConv2d(nn.Module): | |
def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True): | |
super().__init__() | |
self.weight = nn.Parameter(torch.randn(out_channel, in_channel, kernel_size, kernel_size)) | |
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2) | |
self.stride = stride | |
self.padding = padding | |
if bias: | |
self.bias = nn.Parameter(torch.zeros(out_channel)) | |
else: | |
self.bias = None | |
def forward(self, input): | |
return F.conv2d(input, self.weight * self.scale, bias=self.bias, stride=self.stride, padding=self.padding) | |
def __repr__(self): | |
return ( | |
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},' | |
f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})' | |
) | |
class EqualLinear(nn.Module): | |
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None): | |
super().__init__() | |
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul)) | |
bias_init = np.broadcast_to(np.asarray(bias_init, dtype=np.float32), [out_dim]) | |
if bias: | |
self.bias = nn.Parameter(torch.from_numpy(bias_init / lr_mul)) | |
#self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init)) | |
else: | |
self.bias = None | |
self.activation = activation | |
self.scale = (1 / math.sqrt(in_dim)) * lr_mul | |
self.lr_mul = lr_mul | |
def forward(self, input): | |
if self.activation: | |
out = F.linear(input, self.weight * self.scale) | |
out = fused_leaky_relu(out, self.bias * self.lr_mul) | |
else: | |
out = F.linear(input, self.weight * self.scale, bias=self.bias * self.lr_mul) | |
return out | |
def __repr__(self): | |
return (f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})') | |
class ConvLayer(nn.Sequential): | |
def __init__( | |
self, | |
in_channel, | |
out_channel, | |
kernel_size, | |
downsample=False, | |
upsample=False, | |
blur_kernel=[1, 3, 3, 1], | |
bias=True, | |
activate=True, | |
): | |
layers = [] | |
if downsample: | |
factor = 2 | |
p = (len(blur_kernel) - factor) + (kernel_size - 1) | |
pad0 = (p + 1) // 2 | |
pad1 = p // 2 | |
layers.append(Blur(blur_kernel, pad=(pad0, pad1))) | |
stride = 2 | |
self.padding = 0 | |
elif upsample: | |
layers.append(Upsample(blur_kernel)) | |
stride = 1 | |
self.padding = kernel_size // 2 | |
else: | |
stride = 1 | |
self.padding = kernel_size // 2 | |
layers.append(EqualConv2d(in_channel, out_channel, kernel_size, padding=self.padding, stride=stride, | |
bias=bias and not activate)) | |
if activate: | |
if bias: | |
layers.append(FusedLeakyReLU(out_channel)) | |
else: | |
layers.append(ScaledLeakyReLU(0.2)) | |
super().__init__(*layers) | |
class ResBlock(nn.Module): | |
def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]): | |
super().__init__() | |
self.conv1 = ConvLayer(in_channel, in_channel, 3) | |
self.conv2 = ConvLayer(in_channel, out_channel, 3) | |
self.skip = nn.Identity() | |
def forward(self, input): | |
out = self.conv1(input) | |
out = self.conv2(out) | |
skip = self.skip(input) | |
out = (out + skip) / math.sqrt(2) | |
return out | |
class ResDownBlock(nn.Module): | |
def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]): | |
super().__init__() | |
self.conv1 = ConvLayer(in_channel, in_channel, 3) | |
self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True) | |
self.skip = ConvLayer(in_channel, out_channel, 1, downsample=True, activate=False, bias=False) | |
def forward(self, input): | |
out = self.conv1(input) | |
out = self.conv2(out) | |
skip = self.skip(input) | |
out = (out + skip) / math.sqrt(2) | |
return out | |
class ResUpBlock(nn.Module): | |
def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]): | |
super().__init__() | |
self.conv1 = ConvLayer(in_channel, out_channel, 3, upsample=True) | |
self.conv2 = ConvLayer(out_channel, out_channel, 3, upsample=False) | |
if in_channel != out_channel: | |
self.skip = ConvLayer(in_channel, out_channel, 1, upsample=True, activate=False, bias=False) | |
else: | |
self.skip = torch.nn.Identity() | |
def forward(self, x): | |
out = self.conv1(x) | |
out = self.conv2(out) | |
skip = self.skip(x) | |
out = (out + skip) / math.sqrt(2) | |
return out | |
class Upsample(nn.Module): | |
def __init__(self, kernel, factor=2): | |
super().__init__() | |
self.factor = factor | |
kernel = make_kernel(kernel) * (factor ** 2) | |
self.register_buffer('kernel', kernel) | |
p = kernel.shape[0] - factor | |
pad0 = (p + 1) // 2 + factor - 1 | |
pad1 = p // 2 | |
self.pad = (pad0, pad1) | |
def forward(self, input): | |
return upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad) | |
class Downsample(nn.Module): | |
def __init__(self, kernel, factor=2): | |
super().__init__() | |
self.factor = factor | |
kernel = make_kernel(kernel) | |
self.register_buffer('kernel', kernel) | |
p = kernel.shape[0] - factor | |
pad0 = (p + 1) // 2 | |
pad1 = p // 2 | |
self.pad = (pad0, pad1) | |
def forward(self, input): | |
return upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad) | |
class ModulatedConv2d(nn.Module): | |
def __init__(self, in_channel, out_channel, kernel_size, style_dim, demodulate=True, upsample=False, | |
downsample=False, blur_kernel=[1, 3, 3, 1], ): | |
super().__init__() | |
self.eps = 1e-8 | |
self.kernel_size = kernel_size | |
self.in_channel = in_channel | |
self.out_channel = out_channel | |
self.upsample = upsample | |
self.downsample = downsample | |
if upsample: | |
factor = 2 | |
p = (len(blur_kernel) - factor) - (kernel_size - 1) | |
pad0 = (p + 1) // 2 + factor - 1 | |
pad1 = p // 2 + 1 | |
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor) | |
if downsample: | |
factor = 2 | |
p = (len(blur_kernel) - factor) + (kernel_size - 1) | |
pad0 = (p + 1) // 2 | |
pad1 = p // 2 | |
self.blur = Blur(blur_kernel, pad=(pad0, pad1)) | |
fan_in = in_channel * kernel_size ** 2 | |
self.scale = 1 / math.sqrt(fan_in) | |
self.padding = kernel_size // 2 | |
self.weight = nn.Parameter(torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)) | |
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1) | |
self.demodulate = demodulate | |
def __repr__(self): | |
return ( | |
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, ' | |
f'upsample={self.upsample}, downsample={self.downsample})' | |
) | |
def forward(self, input, style): | |
batch, in_channel, height, width = input.shape | |
style = self.modulation(style).view(batch, 1, in_channel, 1, 1) | |
weight = self.scale * self.weight * style | |
if self.demodulate: | |
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8) | |
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1) | |
weight = weight.view(batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size) | |
if self.upsample: | |
input = input.view(1, batch * in_channel, height, width) | |
weight = weight.view(batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size) | |
weight = weight.transpose(1, 2).reshape(batch * in_channel, self.out_channel, self.kernel_size, | |
self.kernel_size) | |
out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch) | |
_, _, height, width = out.shape | |
out = out.view(batch, self.out_channel, height, width) | |
out = self.blur(out) | |
elif self.downsample: | |
input = self.blur(input) | |
_, _, height, width = input.shape | |
input = input.view(1, batch * in_channel, height, width) | |
out = F.conv2d(input, weight, padding=0, stride=2, groups=batch) | |
_, _, height, width = out.shape | |
out = out.view(batch, self.out_channel, height, width) | |
else: | |
input = input.view(1, batch * in_channel, height, width) | |
out = F.conv2d(input, weight, padding=self.padding, groups=batch) | |
_, _, height, width = out.shape | |
out = out.view(batch, self.out_channel, height, width) | |
return out | |
class ConstantInput(nn.Module): | |
def __init__(self, channel, size=4): | |
super().__init__() | |
self.input = nn.Parameter(torch.randn(1, channel, size, size)) | |
def forward(self, input): | |
batch = input.shape[0] | |
out = self.input.repeat(batch, 1, 1, 1) | |
return out | |
class StyledConv(nn.Module): | |
def __init__(self, in_channel, out_channel, kernel_size, style_dim, upsample=False, demodulate=True): | |
super().__init__() | |
self.conv = ModulatedConv2d( | |
in_channel, | |
out_channel, | |
kernel_size, | |
style_dim, | |
upsample=upsample, | |
blur_kernel=[1,3,3,1], | |
demodulate=demodulate, | |
) | |
self.activate = FusedLeakyReLU(out_channel) | |
def forward(self, input, style): | |
out = self.conv(input, style) | |
out = self.activate(out) | |
return out | |
class ToRGB(nn.Module): | |
def __init__(self, in_channel, upsample=True, blur_kernel=[1, 3, 3, 1]): | |
super().__init__() | |
self.upsample = upsample | |
if upsample: | |
self.up = Upsample(blur_kernel) | |
self.conv = ConvLayer(in_channel, 3, 1) | |
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1)) | |
def forward(self, input, skip=None): | |
out = self.conv(input) | |
out = out + self.bias | |
if skip is not None: | |
skip = self.up(skip) | |
out = out + skip | |
return out | |
class ToFlow(nn.Module): | |
def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]): | |
super().__init__() | |
self.upsample = upsample | |
if upsample: | |
self.up = Upsample(blur_kernel) | |
self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate=False) | |
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1)) | |
def forward(self, h, style, feat, skip=None): | |
out = self.conv(h, style) | |
out = out + self.bias | |
if skip is not None: | |
if self.upsample: | |
skip = self.up(skip) | |
out = out + skip | |
xs = torch.linspace(-1, 1, out.size(2)).to(h.device) | |
xs = torch.meshgrid(xs, xs, indexing='xy') | |
xs = torch.stack(xs, 2) | |
xs = xs.unsqueeze(0).repeat(out.size(0), 1, 1, 1) | |
sampler = torch.tanh(out[:, 0:2, :, :]) | |
mask = torch.sigmoid(out[:, 2:3, :, :]) | |
flow = sampler.permute(0, 2, 3, 1) + xs | |
feat_warp = F.grid_sample(feat, flow, align_corners=True) * mask | |
h = feat_warp + (1 - mask) * h | |
#return h, out | |
return feat_warp, h, out | |
class Direction(nn.Module): | |
def __init__(self, style_dim, motion_dim): | |
super(Direction, self).__init__() | |
self.weight = nn.Parameter(torch.randn(style_dim, motion_dim)) | |
def forward(self, input): | |
# input: (bs*t) x 512 | |
weight = self.weight + 1e-8 | |
Q, R = torch.linalg.qr(weight) # get eignvector, orthogonal [n1, n2, n3, n4] | |
input_diag = torch.diag_embed(input) # alpha, diagonal matrix | |
out = torch.matmul(input_diag, Q.T) | |
out = torch.sum(out, dim=1) | |
return out | |