Spaces:
Running
on
Zero
Running
on
Zero
import tempfile | |
import gradio as gr | |
import torch | |
import torchvision | |
from PIL import Image | |
import numpy as np | |
import imageio | |
import spaces | |
from einops import rearrange | |
# lables | |
labels_k = [ | |
'yaw1', | |
'yaw2', | |
'pitch', | |
'roll1', | |
'roll2', | |
'neck', | |
'pout', | |
'open->close', | |
'"O" Mouth', | |
'smile', | |
'close->open', | |
'eyebrows', | |
'eyeballs1', | |
'eyeballs2', | |
] | |
labels_v = [ | |
37, 39, 28, 15, 33, 31, | |
6, 25, 16, 19, | |
13, 24, 17, 26 | |
] | |
def load_image(img, size): | |
img = Image.open(img).convert('RGB') | |
w, h = img.size | |
img = img.resize((size, size)) | |
img = np.asarray(img) | |
img = np.copy(img) | |
img = np.transpose(img, (2, 0, 1)) # 3 x 256 x 256 | |
return img / 255.0, w, h | |
def img_preprocessing(img_path, size): | |
img, w, h = load_image(img_path, size) # [0, 1] | |
img = torch.from_numpy(img).unsqueeze(0).float() # [0, 1] | |
imgs_norm = (img - 0.5) * 2.0 # [-1, 1] | |
return imgs_norm, w, h | |
# def resize(img, size): | |
# transform = torchvision.transforms.Compose([ | |
# torchvision.transforms.Resize((size,size), antialias=True), | |
# ]) | |
# return transform(img) | |
# def resize_back(img, w, h): | |
# transform = torchvision.transforms.Compose([ | |
# torchvision.transforms.Resize((h, w), antialias=True), | |
# ]) | |
# return transform(img) | |
# Pre-compile resize transforms for better performance | |
resize_transform_cache = {} | |
def get_resize_transform(size): | |
"""Get cached resize transform - creates once, reuses many times""" | |
if size not in resize_transform_cache: | |
# Only create the transform if it doesn't exist in cache | |
resize_transform_cache[size] = torchvision.transforms.Resize( | |
size, | |
interpolation=torchvision.transforms.InterpolationMode.BILINEAR, | |
antialias=True | |
) | |
return resize_transform_cache[size] | |
def resize(img, size): | |
"""Use cached resize transform""" | |
transform = get_resize_transform((size, size)) | |
return transform(img) | |
def resize_back(img, w, h): | |
"""Use cached resize transform for back operation""" | |
transform = get_resize_transform((h, w)) | |
return transform(img) | |
def img_denorm(img): | |
img = img.clamp(-1, 1) | |
img = (img - img.min()) / (img.max() - img.min()) | |
return img | |
# def img_postprocessing(image, w, h): | |
# image = resize_back(image, w, h) | |
# image = image.permute(0, 2, 3, 1) | |
# edited_image = img_denorm(image) | |
# img_output = (edited_image[0].numpy() * 255).astype(np.uint8) | |
# with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file: | |
# imageio.imwrite(temp_file.name, img_output, quality=8) | |
# return temp_file.name | |
def img_postprocessing(img, w, h): | |
img = resize_back(img, w, h) | |
img = img_denorm(img) | |
img = img.squeeze(0).permute(1, 2, 0).contiguous() # contiguous() for fast transfer | |
img_output = (img.cpu().numpy() * 255).astype(np.uint8) | |
return img_output | |
def img_edit(gen, device): | |
def edit_img(image, *selected_s): | |
image_tensor, w, h = img_preprocessing(image, 512) | |
image_tensor = image_tensor.to(device) | |
edited_image_tensor = gen.edit_img(image_tensor, labels_v, selected_s) | |
# de-norm | |
edited_image = img_postprocessing(edited_image_tensor, w, h) | |
return edited_image | |
def clear_media(): | |
return None, *([0] * len(labels_k)) | |
with gr.Tab("Image Editing"): | |
inputs_s = [] | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Row(): | |
with gr.Accordion(open=True, label="Image"): | |
image_input = gr.Image(type="filepath", width=512) # , height=550) | |
gr.Examples( | |
examples=[ | |
["./data/source/macron.png"], | |
["./data/source/einstein.png"], | |
["./data/source/taylor.png"], | |
["./data/source/portrait1.png"], | |
["./data/source/portrait2.png"], | |
["./data/source/portrait3.png"], | |
], | |
inputs=[image_input], | |
cache_examples=False, | |
visible=True, | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Row(): # Buttons now within a single Row | |
edit_btn = gr.Button("Edit") | |
clear_btn = gr.Button("Clear") | |
with gr.Row(): | |
animate_btn = gr.Button("Generate") | |
with gr.Column(scale=1): | |
with gr.Row(): | |
with gr.Accordion(open=True, label="Edited Image"): | |
image_output = gr.Image(label="Output Image", type='numpy', interactive=False, width=512) | |
with gr.Accordion("Control Panel", open=True): | |
with gr.Tab("Head"): | |
with gr.Row(): | |
for k in labels_k[:3]: | |
slider = gr.Slider(minimum=-1.0, maximum=0.5, value=0, label=k) | |
inputs_s.append(slider) | |
with gr.Row(): | |
for k in labels_k[3:6]: | |
slider = gr.Slider(minimum=-0.5, maximum=0.5, value=0, label=k) | |
inputs_s.append(slider) | |
with gr.Tab("Mouth"): | |
with gr.Row(): | |
for k in labels_k[6:8]: | |
slider = gr.Slider(minimum=-0.4, maximum=0.4, value=0, label=k) | |
inputs_s.append(slider) | |
with gr.Row(): | |
for k in labels_k[8:10]: | |
slider = gr.Slider(minimum=-0.4, maximum=0.4, value=0, label=k) | |
inputs_s.append(slider) | |
with gr.Tab("Eyes"): | |
with gr.Row(): | |
for k in labels_k[10:12]: | |
slider = gr.Slider(minimum=-0.4, maximum=0.4, value=0, label=k) | |
inputs_s.append(slider) | |
with gr.Row(): | |
for k in labels_k[12:14]: | |
slider = gr.Slider(minimum=-0.2, maximum=0.2, value=0, label=k) | |
inputs_s.append(slider) | |
edit_btn.click( | |
fn=edit_img, | |
inputs=[image_input] + inputs_s, | |
outputs=[image_output], | |
show_progress=True | |
) | |
clear_btn.click( | |
fn=clear_media, | |
outputs=[image_output] + inputs_s | |
) | |