Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,143 Bytes
bf173c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import tempfile
import gradio as gr
import torch
import torchvision
from PIL import Image
import numpy as np
import imageio
import spaces
from einops import rearrange
# lables
labels_k = [
'yaw1',
'yaw2',
'pitch',
'roll1',
'roll2',
'neck',
'pout',
'open->close',
'"O" Mouth',
'smile',
'close->open',
'eyebrows',
'eyeballs1',
'eyeballs2',
]
labels_v = [
37, 39, 28, 15, 33, 31,
6, 25, 16, 19,
13, 24, 17, 26
]
@torch.compiler.allow_in_graph
def load_image(img, size):
img = Image.open(img).convert('RGB')
w, h = img.size
img = img.resize((size, size))
img = np.asarray(img)
img = np.copy(img)
img = np.transpose(img, (2, 0, 1)) # 3 x 256 x 256
return img / 255.0, w, h
@torch.compiler.allow_in_graph
def img_preprocessing(img_path, size):
img, w, h = load_image(img_path, size) # [0, 1]
img = torch.from_numpy(img).unsqueeze(0).float() # [0, 1]
imgs_norm = (img - 0.5) * 2.0 # [-1, 1]
return imgs_norm, w, h
# Pre-compile resize transforms for better performance
resize_transform_cache = {}
def get_resize_transform(size):
"""Get cached resize transform - creates once, reuses many times"""
if size not in resize_transform_cache:
# Only create the transform if it doesn't exist in cache
resize_transform_cache[size] = torchvision.transforms.Resize(
size,
interpolation=torchvision.transforms.InterpolationMode.BILINEAR,
antialias=True
)
return resize_transform_cache[size]
def resize(img, size):
"""Use cached resize transform"""
transform = get_resize_transform((size, size))
return transform(img)
def resize_back(img, w, h):
"""Use cached resize transform for back operation"""
transform = get_resize_transform((h, w))
return transform(img)
def img_denorm(img):
img = img.clamp(-1, 1)
img = (img - img.min()) / (img.max() - img.min())
return img
def img_postprocessing(img, w, h):
img = resize_back(img, w, h)
img = img_denorm(img)
img = img.squeeze(0).permute(1, 2, 0).contiguous() # contiguous() for fast transfer
img_output = (img.cpu().numpy() * 255).astype(np.uint8)
return img_output
def img_edit(gen, device):
@torch.compile
def compiled_enc_img(image_tensor, selected_s):
"""Compiled version of just the model inference"""
return gen.enc_img(image_tensor, labels_v, selected_s)
@torch.compile
def compiled_dec_img(z_s2r, alpha_r2s, feat_rgb):
"""Compiled version of just the model inference"""
return gen.dec_img(z_s2r, alpha_r2s, feat_rgb)
# Pre-warm the compiled model with dummy data to reduce first-run compilation time
def _warmup_model():
"""Pre-warm the model compilation with representative shapes"""
print("[img_edit] Pre-warming model compilation...")
dummy_image = torch.randn(1, 3, 512, 512, device=device)
dummy_selected_s = [0.0] * len(labels_v)
try:
with torch.inference_mode():
z_s2r, alpha_r2s, feat_rgb = compiled_enc_img(dummy_image, dummy_selected_s)
_ = compiled_dec_img(z_s2r, alpha_r2s, feat_rgb)
print("[img_edit] Model pre-warming completed successfully")
except Exception as e:
print(f"[img_edit] Model pre-warming failed (will compile on first use): {e}")
# Pre-warm the model
_warmup_model()
@spaces.GPU
@torch.inference_mode()
def edit_img(image, *selected_s):
image_tensor, w, h = img_preprocessing(image, 512)
image_tensor = image_tensor.to(device)
z_s2r, alpha_r2s, feat_rgb = compiled_enc_img(image_tensor, selected_s)
edited_image_tensor = compiled_dec_img(z_s2r, alpha_r2s, feat_rgb)
# de-norm
edited_image = img_postprocessing(edited_image_tensor, w, h)
return edited_image
def clear_media():
return None, *([0] * len(labels_k))
with gr.Tab("Image Editing"):
inputs_s = []
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
with gr.Accordion(open=True, label="Image"):
image_input = gr.Image(type="filepath", width=512) # , height=550)
gr.Examples(
examples=[
["./data/source/macron.png"],
["./data/source/einstein.png"],
["./data/source/taylor.png"],
["./data/source/portrait1.png"],
["./data/source/portrait2.png"],
["./data/source/portrait3.png"],
],
inputs=[image_input],
cache_examples=False,
visible=True,
)
with gr.Row():
with gr.Column(scale=1):
with gr.Row(): # Buttons now within a single Row
#edit_btn = gr.Button("Edit")
clear_btn = gr.Button("Clear")
#with gr.Row():
# animate_btn = gr.Button("Generate")
with gr.Column(scale=1):
with gr.Row():
with gr.Accordion(open=True, label="Edited Image"):
image_output = gr.Image(label="Output Image", type='numpy', interactive=False, width=512)
with gr.Accordion("Control Panel - Using Sliders to Edit Image", open=True):
with gr.Tab("Head"):
with gr.Row():
for k in labels_k[:3]:
slider = gr.Slider(minimum=-1.0, maximum=0.5, value=0, label=k)
inputs_s.append(slider)
with gr.Row():
for k in labels_k[3:6]:
slider = gr.Slider(minimum=-0.5, maximum=0.5, value=0, label=k)
inputs_s.append(slider)
with gr.Tab("Mouth"):
with gr.Row():
for k in labels_k[6:8]:
slider = gr.Slider(minimum=-0.4, maximum=0.4, value=0, label=k)
inputs_s.append(slider)
with gr.Row():
for k in labels_k[8:10]:
slider = gr.Slider(minimum=-0.4, maximum=0.4, value=0, label=k)
inputs_s.append(slider)
with gr.Tab("Eyes"):
with gr.Row():
for k in labels_k[10:12]:
slider = gr.Slider(minimum=-0.4, maximum=0.4, value=0, label=k)
inputs_s.append(slider)
with gr.Row():
for k in labels_k[12:14]:
slider = gr.Slider(minimum=-0.2, maximum=0.2, value=0, label=k)
inputs_s.append(slider)
for slider in inputs_s:
slider.change(
fn=edit_img,
inputs=[image_input] + inputs_s,
outputs=[image_output],
show_progress='hidden',
trigger_mode='always_last',
# currently we have a latency around 450ms
stream_every=0.5
)
clear_btn.click(
fn=clear_media,
outputs=[image_output] + inputs_s
)
|