File size: 4,244 Bytes
c42db24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
import torch
import torchvision
from PIL import Image
import numpy as np
import imageio
from einops import rearrange, repeat


def load_image(img, size):
    # img = Image.open(filename).convert('RGB')
    if not isinstance(img, np.ndarray):
        img = Image.open(img).convert('RGB')
        img = img.resize((size, size))
        img = np.asarray(img)
    img = np.transpose(img, (2, 0, 1))  # 3 x 256 x 256

    return img / 255.0


def img_preprocessing(img_path, size):
    img = load_image(img_path, size)  # [0, 1]
    img = torch.from_numpy(img).unsqueeze(0).float()  # [0, 1]
    imgs_norm = (img - 0.5) * 2.0  # [-1, 1]

    return imgs_norm


def resize(img, size):
    transform = torchvision.transforms.Compose([
        torchvision.transforms.Resize(size, antialias=True),
        torchvision.transforms.CenterCrop(size)
    ])

    return transform(img)


def vid_preprocessing(vid_path, size):
    vid_dict = torchvision.io.read_video(vid_path, pts_unit='sec')
    vid = vid_dict[0].permute(0, 3, 1, 2).unsqueeze(0)  # btchw
    fps = vid_dict[2]['video_fps']
    vid_norm = (vid / 255.0 - 0.5) * 2.0  # [-1, 1]

    vid_norm = torch.cat([
        resize(vid_norm[:, i, :, :, :], size).unsqueeze(1) for i in range(vid.size(1))
    ], dim=1)

    return vid_norm, fps


def img_denorm(img):
    img = img.clamp(-1, 1).cpu()
    img = (img - img.min()) / (img.max() - img.min())

    return img


def vid_denorm(vid):
    vid = vid.clamp(-1, 1).cpu()
    vid = (vid - vid.min()) / (vid.max() - vid.min())

    return vid


def save_img_edit(save_dir, img, img_e):
    # img: BCHW
    # img_e: BCHW

    output_img_path = os.path.join(save_dir, "img_edit.png")
    output_img_all_path = os.path.join(save_dir, "img_all.png")

    img = rearrange(img, 'b c h w -> b h w c')
    img_e = rearrange(img_e, 'b c h w -> b h w c')
    img_all = torch.cat([img, img_e], dim=2)

    img_e_np = (img_denorm(img_e[0]).numpy() * 255).astype('uint8')
    img_all_np = (img_denorm(img_all[0]).numpy() * 255).astype('uint8')

    imageio.imwrite(output_img_path, img_e_np, quality=8)
    imageio.imwrite(output_img_all_path, img_all_np, quality=8)

    return


def save_vid_edit(save_dir, vid_d, vid_a, fps):
    # img_s: BCHW
    # vid_d: BTCHW
    # vid_a: BCTHW

    output_vid_a_path = os.path.join(save_dir, "vid_animation.mp4")
    output_vid_all_path = os.path.join(save_dir, "vid_all.mp4")

    vid_d = rearrange(vid_d, 'b t c h w -> b t h w c')
    vid_a = rearrange(vid_a, 'b c t h w -> b t h w c')
    vid_all = torch.cat([vid_d, vid_a], dim=3)

    vid_a_np = (vid_denorm(vid_a[0]).numpy() * 255).astype('uint8')
    vid_all_np = (vid_denorm(vid_all[0]).numpy() * 255).astype('uint8')

    imageio.mimwrite(output_vid_a_path, vid_a_np, fps=fps, codec='libx264', quality=8)
    imageio.mimwrite(output_vid_all_path, vid_all_np, fps=fps, codec='libx264', quality=8)

    return


def save_animation(save_dir, img_s, vid_d, vid_a, fps):
    # img_s: BCHW
    # vid_d: BTCHW
    # vid_a: BCTHW

    output_vid_a_path = os.path.join(save_dir, "vid_animation.mp4")
    output_img_e_path = os.path.join(save_dir, "img_edit.png")
    output_vid_all_path = os.path.join(save_dir, "vid_all.mp4")

    vid_d = rearrange(vid_d, 'b t c h w -> b t h w c')
    vid_a = rearrange(vid_a, 'b c t h w -> b t h w c')
    img_s = repeat(rearrange(img_s, 'b c h w -> b h w c'), 'b h w c -> b t h w c', t=vid_d.size(1))
    vid_all = torch.cat([img_s, vid_d, vid_a], dim=3)

    vid_a_np = (vid_denorm(vid_a[0]).numpy() * 255).astype('uint8')
    img_e_np = vid_a_np[0]
    vid_all_np = (vid_denorm(vid_all[0]).numpy() * 255).astype('uint8')

    imageio.mimwrite(output_vid_a_path, vid_a_np, fps=fps, codec='libx264', quality=8)
    imageio.mimwrite(output_vid_all_path, vid_all_np, fps=fps, codec='libx264', quality=8)
    imageio.imwrite(output_img_e_path, img_e_np, quality=8)

    return


def save_linear_manipulation(save_dir, vid, fps):
    # vid: BCTHW

    output_vid_path = os.path.join(save_dir, "vid_interpolation.mp4")

    vid = rearrange(vid, 'b c t h w -> b t h w c')
    vid_np = (vid_denorm(vid[0]).numpy() * 255).astype('uint8')

    imageio.mimwrite(output_vid_path, vid_np, fps=fps, codec='libx264', quality=8)

    return