File size: 5,574 Bytes
3730a63
 
 
12360eb
3730a63
 
 
 
 
12360eb
3730a63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1d78c4
3730a63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12360eb
 
 
 
 
 
 
 
 
 
 
 
 
 
3730a63
12360eb
3730a63
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import json
import re


import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity


########################### Chapter rendering functions ###########################

def get_chapters(paragraphs, table_of_content):

    chapters = []

    for i in range(len(table_of_content)):


        if i < len(table_of_content) - 1:

            chapter = {'num_chapter': i,
                       'title': table_of_content[i]['title'],
                       'start_paragraph_number': table_of_content[i]['start_paragraph_number'],
                       'end_paragraph_number': table_of_content[i + 1]['start_paragraph_number'],
                       'start_time': paragraphs[table_of_content[i]['start_paragraph_number']]['start_time'],
                       'end_time': paragraphs[table_of_content[i + 1]['start_paragraph_number']]['start_time'],
                      }

        else:
            chapter = {'num_chapter': i,
                       'title': table_of_content[i]['title'],
                       'start_paragraph_number': table_of_content[i]['start_paragraph_number'],
                       'end_paragraph_number': len(paragraphs),
                       'start_time': paragraphs[table_of_content[i]['start_paragraph_number']]['start_time'],
                       'end_time': paragraphs[-1]['start_time'],
                      }

        paragraphs_chapter = [paragraphs[j]['paragraph_text'] for j in
                                range(chapter['start_paragraph_number'], chapter['end_paragraph_number'])]

        paragraph_timestamps_chapter = [paragraphs[j]['start_time'] for j in
                                          range(chapter['start_paragraph_number'], chapter['end_paragraph_number'])]

        chapter['paragraphs'] = paragraphs_chapter
        chapter['paragraph_timestamps'] = paragraph_timestamps_chapter

        chapters.append(chapter)

    return chapters

def convert_seconds_to_hms(seconds):
    # Calculate hours, minutes, and remaining seconds
    hours = seconds // 3600
    minutes = (seconds % 3600) // 60
    remaining_seconds = seconds % 60

    # Format the result as HH:MM:SS
    return f"{hours:02}:{minutes:02}:{remaining_seconds:02}"

def toc_to_html(chapters):

    toc_html = "<h1>Video chapters</h1><p>\n"

    for chapter in chapters:
        num_chapter = chapter['num_chapter']
        title = chapter['title']

        from_to = convert_seconds_to_hms(int(chapter['start_time'])) + " - "

        toc_html += f"""{from_to}<a href = "#{num_chapter}" >{num_chapter+1} - {title}</a><br>\n"""

    return toc_html


def section_to_html(section_json_data):
    formatted_section = ""

    paragraphs = section_json_data['paragraphs']
    paragraphs_timestamp_hms = [convert_seconds_to_hms(int(section_json_data['paragraph_timestamps'][i])) for i in range(len(paragraphs))]

    for i, (paragraph, paragraph_timestamp_hms) in enumerate(zip(paragraphs, paragraphs_timestamp_hms)):

        formatted_section += f"""
        <div class="row mb-4">
            <div class="col-md-1">
                {paragraph_timestamp_hms}
            </div>
            <div class="col-md-11">
                <p>{paragraph}</p>
            </div>
        </div>"""

    num_section = section_json_data['num_chapter']

    from_to = "From "+convert_seconds_to_hms(int(section_json_data['start_time'])) + " to " + convert_seconds_to_hms(
        int(section_json_data['end_time']))

    title = f"{section_json_data['title']}"

    title_link = f"""<div class="transcript-title-icon" " id="{num_section}">{num_section+1} - {title}</div>"""

    summary_section = f"""
            <a id="{num_section}"><h2 id="{num_section}">{title_link}</h2></a>
            {from_to}
            <p>
            <div class="summary-section">
                <div class="summary-text" >
                    {formatted_section}
                </div>
            </div>
            """

    return summary_section


def get_result_as_html(chapters, video_id):
    video_embed = f"""
<iframe width="100%" height="400" src="https://www.youtube.com/embed/{video_id}" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
"""

    toc = toc_to_html(chapters)

    edited_transcript = f"""
<h1>Structured transcript</h1>
<p>
"""

    for i in range(len(chapters)):
        chapter_json_data = chapters[i]

        edited_transcript += section_to_html(chapter_json_data)

    result_as_html = f"""
<link href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" rel="stylesheet">
<div class="container mt-4">
    <div class="content">
        {video_embed}
    </div>
    <p>
    <div class="content">
        {toc}
    </div>
    <p>
    <div class="content">
        {edited_transcript}
    </div>
</div>"""

    return result_as_html

def get_transcript_as_text(transcript):
    temp_list = [convert_seconds_to_hms(int(s['start']))+' '+s['text'] for s in transcript]
    transcript_as_text = '\n'.join(temp_list)

    return transcript_as_text

def load_transcript(video_id):
    file_name = f"examples/{video_id}_transcript.json"
    with open(file_name, 'r') as file:
        transcript = json.load(file)

    transcript_as_text = get_transcript_as_text(transcript)
    return transcript_as_text

def load_json_chapters(video_id):
    file_name = f"examples/{video_id}.json"
    with open(file_name, 'r') as file:
        chapters = json.load(file)

    return chapters