Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,114 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
|
4 |
-
"""
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
9 |
|
10 |
-
def
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
|
|
|
41 |
|
|
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
"""
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
gr.
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
)
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
|
|
|
|
|
|
|
|
|
4 |
|
5 |
|
6 |
+
def get_data_product_id_from_table(evt: gr.SelectData):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
id=evt.value
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
return get_data_product_id(id)
|
11 |
|
12 |
+
def get_data_product_id(id):
|
13 |
|
14 |
+
print(id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
image_path_front = dataset_merged_df.loc[dataset_merged_df['ID'] == id, 'Front photo'].values[0]
|
17 |
+
image_path_ingredients = dataset_merged_df.loc[dataset_merged_df['ID'] == id, 'Ingredients photo'].values[0]
|
18 |
+
image_path_nutritionals = dataset_merged_df.loc[dataset_merged_df['ID'] == id, 'Nutritionals photo'].values[0]
|
19 |
|
20 |
+
features = ['brand', 'product_name', 'ingredients', 'energy_kj', 'energy_kcal', 'fat', 'saturated_fat', 'carbohydrates', 'sugars', 'fibers', 'proteins', 'salt']
|
21 |
|
22 |
+
data = []
|
23 |
+
|
24 |
+
for feature in features:
|
25 |
+
product_values = dataset_merged_df.loc[dataset_merged_df['ID'] == id, [f'Reference_{feature}',f'Predicted_{feature}',f'accuracy_score_{feature}']]
|
26 |
+
product_values_list = product_values.values.flatten().tolist()
|
27 |
+
data.append([feature]+product_values_list)
|
28 |
+
|
29 |
+
data = pd.DataFrame(data, columns=['Feature', 'Reference value', 'Predicted value', 'Accuracy score'])
|
30 |
+
gradients = 1-data['Accuracy score']
|
31 |
+
|
32 |
+
data = data.map(lambda x: f'{x:g}' if isinstance(x, float) else x)
|
33 |
+
data = data.style.background_gradient(axis=0, gmap=gradients, cmap='summer', vmin=0, vmax=1)
|
34 |
+
|
35 |
+
plots = [image_path_front, image_path_ingredients, image_path_nutritionals]
|
36 |
+
|
37 |
+
return {data_df: data,
|
38 |
+
data_plot: plots,
|
39 |
+
}
|
40 |
+
|
41 |
+
def load_data(filepath):
|
42 |
+
|
43 |
+
global dataset_merged_df
|
44 |
+
global dataset_metadata
|
45 |
+
|
46 |
+
dataset_merged_df = pd.read_csv(f"{filepath}")
|
47 |
+
dataset_merged_df['mean_accuracy_score'] = dataset_merged_df.filter(regex='^accuracy_score').mean(axis=1)
|
48 |
+
|
49 |
+
dataset_df = dataset_merged_df[['ID', 'Reference_brand', 'Reference_product_name', 'mean_accuracy_score']].copy()
|
50 |
+
dataset_df = dataset_df.style.background_gradient(axis=0, gmap=1-dataset_df['mean_accuracy_score'], cmap='summer', vmin=0, vmax=1)
|
51 |
+
|
52 |
+
return dataset_df
|
53 |
+
|
54 |
+
def toggle_row_visibility(show):
|
55 |
+
if show:
|
56 |
+
return gr.update(visible=True)
|
57 |
+
else:
|
58 |
+
return gr.update(visible=False)
|
59 |
+
|
60 |
+
# Custom CSS to set max height for the rows
|
61 |
+
custom_css = """
|
62 |
+
.dataframe-wrap {
|
63 |
+
max-height: 300px; /* Set the desired height */
|
64 |
+
overflow-y: scroll;
|
65 |
+
}
|
66 |
"""
|
67 |
+
|
68 |
+
with gr.Blocks(css=custom_css) as demo:
|
69 |
+
|
70 |
+
gr.HTML("<div align='center'><h1>Euroconsumers Food Data Lake</h1>")
|
71 |
+
gr.HTML("<div align='center'><h2>Food data processing</h2>")
|
72 |
+
|
73 |
+
with gr.Row():
|
74 |
+
file_input = gr.File(label="Upload CSV File", type="filepath")
|
75 |
+
|
76 |
+
with gr.Row(visible=False) as dataset_block:
|
77 |
+
with gr.Column():
|
78 |
+
gr.HTML("<h2>Dataset summary</h2>")
|
79 |
+
with gr.Row():
|
80 |
+
gr.HTML("Click on a product ID (FIRST COLUMN) in the table to view product details")
|
81 |
+
|
82 |
+
# Display summary of the dataset - ID, Reference_brand, Reference_product_name, mean_accuracy_score
|
83 |
+
with gr.Row(elem_classes="dataframe-wrap"):
|
84 |
+
dataframe_component = gr.DataFrame()
|
85 |
+
|
86 |
+
with gr.Row(visible=False) as product_detail_block:
|
87 |
+
with gr.Column():
|
88 |
+
# Section for product details
|
89 |
+
gr.HTML("<h2>Product details</h2>")
|
90 |
+
|
91 |
+
# Display product photos
|
92 |
+
data_plot = gr.Gallery(label="Product photos", show_label=True, elem_id="gallery"
|
93 |
+
, columns=[3], rows=[1], object_fit="contain", height="auto")
|
94 |
+
# Display product data
|
95 |
+
# https://github.com/gradio-app/gradio/pull/5894
|
96 |
+
data_df = gr.Dataframe(label="Product data", scale=2,
|
97 |
+
column_widths=["10%", "40%", "40%", "10%"],
|
98 |
+
wrap=True)
|
99 |
+
|
100 |
+
### Control functions
|
101 |
+
|
102 |
+
# Linking the select_dataset change event to update both the gradio DataFrame and product_ids dropdown
|
103 |
+
file_input.change(load_data, inputs=file_input, outputs=dataframe_component)
|
104 |
+
# Toggle visibility of the dataset block
|
105 |
+
file_input.change(toggle_row_visibility, inputs=file_input, outputs=dataset_block)
|
106 |
+
|
107 |
+
# Update the product data and plots when a product ID is clicked in the dataframe
|
108 |
+
dataframe_component.select(fn=get_data_product_id_from_table, outputs=[data_df, data_plot])
|
109 |
+
# Toggle visibility of the product detail block
|
110 |
+
dataframe_component.select(toggle_row_visibility, inputs=file_input, outputs=product_detail_block)
|
111 |
+
|
112 |
+
demo.launch(debug=True)
|
113 |
+
|
114 |
+
|