Spaces:
Sleeping
Sleeping
Upload 10 files
Browse files- .dockerignore +64 -0
- .gitattributes +6 -0
- Dockerfile +43 -0
- app.py +12 -0
- app/config.py +38 -0
- app/embedding.py +1461 -0
- app/main.py +40 -0
- app/routes/review.py +175 -0
- app/supabase.py +106 -0
- requirements.txt +30 -0
.dockerignore
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Git
|
2 |
+
.git
|
3 |
+
.gitignore
|
4 |
+
|
5 |
+
# Python
|
6 |
+
__pycache__
|
7 |
+
*.pyc
|
8 |
+
*.pyo
|
9 |
+
*.pyd
|
10 |
+
.Python
|
11 |
+
env
|
12 |
+
pip-log.txt
|
13 |
+
pip-delete-this-directory.txt
|
14 |
+
.tox
|
15 |
+
.coverage
|
16 |
+
.coverage.*
|
17 |
+
.cache
|
18 |
+
nosetests.xml
|
19 |
+
coverage.xml
|
20 |
+
*.cover
|
21 |
+
*.log
|
22 |
+
.git
|
23 |
+
.mypy_cache
|
24 |
+
.pytest_cache
|
25 |
+
.hypothesis
|
26 |
+
|
27 |
+
# Virtual environments
|
28 |
+
venv/
|
29 |
+
env/
|
30 |
+
ENV/
|
31 |
+
env.bak/
|
32 |
+
venv.bak/
|
33 |
+
|
34 |
+
# IDE
|
35 |
+
.vscode/
|
36 |
+
.idea/
|
37 |
+
*.swp
|
38 |
+
*.swo
|
39 |
+
*~
|
40 |
+
|
41 |
+
# OS
|
42 |
+
.DS_Store
|
43 |
+
.DS_Store?
|
44 |
+
._*
|
45 |
+
.Spotlight-V100
|
46 |
+
.Trashes
|
47 |
+
ehthumbs.db
|
48 |
+
Thumbs.db
|
49 |
+
|
50 |
+
# Project specific
|
51 |
+
uploads/
|
52 |
+
*.pdf
|
53 |
+
*.db
|
54 |
+
models/
|
55 |
+
*.bin
|
56 |
+
*.safetensors
|
57 |
+
secrets.json
|
58 |
+
credentials.json
|
59 |
+
|
60 |
+
# Documentation
|
61 |
+
README.md
|
62 |
+
*.md
|
63 |
+
HF-SPACES-CHECKLIST.md
|
64 |
+
env.example
|
.gitattributes
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.py linguist-language=Python
|
2 |
+
*.md linguist-language=Markdown
|
3 |
+
*.txt linguist-language=Text
|
4 |
+
*.json linguist-language=JSON
|
5 |
+
*.yml linguist-language=YAML
|
6 |
+
*.yaml linguist-language=YAML
|
Dockerfile
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use Python 3.11 slim image for smaller size
|
2 |
+
FROM python:3.11-slim
|
3 |
+
|
4 |
+
# Set working directory
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Set environment variables
|
8 |
+
ENV PYTHONDONTWRITEBYTECODE=1
|
9 |
+
ENV PYTHONUNBUFFERED=1
|
10 |
+
ENV PORT=8000
|
11 |
+
|
12 |
+
# Install system dependencies
|
13 |
+
RUN apt-get update && apt-get install -y \
|
14 |
+
gcc \
|
15 |
+
g++ \
|
16 |
+
curl \
|
17 |
+
&& rm -rf /var/lib/apt/lists/*
|
18 |
+
|
19 |
+
# Copy requirements first for better caching
|
20 |
+
COPY requirements.txt .
|
21 |
+
|
22 |
+
# Install Python dependencies
|
23 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
24 |
+
|
25 |
+
# Download spaCy model
|
26 |
+
RUN python -m spacy download en_core_web_sm
|
27 |
+
|
28 |
+
# Copy application code
|
29 |
+
COPY . .
|
30 |
+
|
31 |
+
# Create non-root user for security
|
32 |
+
RUN adduser --disabled-password --gecos '' appuser && chown -R appuser:appuser /app
|
33 |
+
USER appuser
|
34 |
+
|
35 |
+
# Expose port
|
36 |
+
EXPOSE 7860
|
37 |
+
|
38 |
+
# Health check (update to port 7860)
|
39 |
+
HEALTHCHECK --interval=30s --timeout=30s --start-period=5s --retries=3 \
|
40 |
+
CMD curl -f http://localhost:7860/health || exit 1
|
41 |
+
|
42 |
+
# Run the FastAPI application (not Gradio)
|
43 |
+
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Hugging Face Spaces entry point for AI Resume Reviewer
|
3 |
+
"""
|
4 |
+
import os
|
5 |
+
import logging
|
6 |
+
from app.main import app
|
7 |
+
|
8 |
+
# Configure logging
|
9 |
+
logging.basicConfig(level=logging.INFO)
|
10 |
+
logger = logging.getLogger(__name__)
|
11 |
+
|
12 |
+
# (Remove all code in this file or delete the file if not needed for Gradio)
|
app/config.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Configuration settings for the application
|
3 |
+
"""
|
4 |
+
from pydantic_settings import BaseSettings
|
5 |
+
from typing import Optional
|
6 |
+
|
7 |
+
class Settings(BaseSettings):
|
8 |
+
"""Application settings"""
|
9 |
+
|
10 |
+
# Supabase configuration
|
11 |
+
SUPABASE_URL: Optional[str] = None
|
12 |
+
SUPABASE_KEY: Optional[str] = None
|
13 |
+
|
14 |
+
# API Keys for LLM Services
|
15 |
+
GROQ_API_KEY: Optional[str] = None
|
16 |
+
COHERE_API_KEY: Optional[str] = None
|
17 |
+
TOGETHER_API_KEY: Optional[str] = None
|
18 |
+
HUGGINGFACE_API_KEY: Optional[str] = None
|
19 |
+
OPENROUTER_API_KEY: Optional[str] = None
|
20 |
+
|
21 |
+
# LLM Model configuration
|
22 |
+
LLM_MODEL_NAME: str = "mistralai/Mistral-7B-Instruct-v0.1"
|
23 |
+
PARSER_MODEL_NAME: str = "llama3-8b-8192"
|
24 |
+
LLM_FEEDBACK_MODEL_NAME: str = "mistralai/mistral-7b-instruct:free"
|
25 |
+
|
26 |
+
# Embedding model configuration
|
27 |
+
EMBEDDING_MODEL_NAME: str = "all-MiniLM-L6-v2"
|
28 |
+
|
29 |
+
# API configuration
|
30 |
+
MAX_FILE_SIZE: int = 10 * 1024 * 1024 # 10MB
|
31 |
+
ALLOWED_FILE_TYPES: list = ["application/pdf"]
|
32 |
+
|
33 |
+
class Config:
|
34 |
+
env_file = ".env"
|
35 |
+
case_sensitive = True
|
36 |
+
|
37 |
+
# Global settings instance
|
38 |
+
settings = Settings()
|
app/embedding.py
ADDED
@@ -0,0 +1,1461 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Comprehensive Resume and Job Description Matching System
|
3 |
+
Implements all phases: PDF extraction, LLM ensemble, semantic similarity, skills extraction, and multi-layer validation.
|
4 |
+
Enhanced with Final Similarity Score calculation.
|
5 |
+
"""
|
6 |
+
import os
|
7 |
+
import re
|
8 |
+
import io
|
9 |
+
import pdfplumber
|
10 |
+
import fitz # PyMuPDF
|
11 |
+
import numpy as np
|
12 |
+
from typing import Optional, List, Dict, Any
|
13 |
+
from sentence_transformers import SentenceTransformer, util
|
14 |
+
from transformers import DistilBertTokenizer, DistilBertModel
|
15 |
+
import torch
|
16 |
+
import requests
|
17 |
+
import spacy
|
18 |
+
from fuzzywuzzy import fuzz
|
19 |
+
from fuzzywuzzy import process as fuzzy_process
|
20 |
+
from dotenv import load_dotenv
|
21 |
+
import time
|
22 |
+
|
23 |
+
# Load environment variables from .env file
|
24 |
+
load_dotenv()
|
25 |
+
|
26 |
+
# Load spaCy model for NER
|
27 |
+
try:
|
28 |
+
nlp = spacy.load("en_core_web_sm")
|
29 |
+
except Exception:
|
30 |
+
import subprocess
|
31 |
+
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
32 |
+
nlp = spacy.load("en_core_web_sm")
|
33 |
+
|
34 |
+
# ========== Phase 1: Enhanced PDF Processing ==========
|
35 |
+
class PDFExtractor:
|
36 |
+
"""Extracts text from PDFs using pdfplumber and PyMuPDF as fallback. OCR removed."""
|
37 |
+
@staticmethod
|
38 |
+
def extract_text(pdf_bytes: bytes) -> str:
|
39 |
+
# Try pdfplumber first
|
40 |
+
try:
|
41 |
+
with pdfplumber.open(io.BytesIO(pdf_bytes)) as pdf:
|
42 |
+
text = "\n".join(page.extract_text() or '' for page in pdf.pages)
|
43 |
+
if text.strip():
|
44 |
+
return PDFExtractor.clean_text(text)
|
45 |
+
except Exception:
|
46 |
+
pass
|
47 |
+
# Fallback to PyMuPDF
|
48 |
+
try:
|
49 |
+
doc = fitz.open(stream=pdf_bytes, filetype="pdf")
|
50 |
+
text = "\n".join(page.get_text() for page in doc)
|
51 |
+
doc.close()
|
52 |
+
if text.strip():
|
53 |
+
return PDFExtractor.clean_text(text)
|
54 |
+
except Exception:
|
55 |
+
pass
|
56 |
+
# If both fail, return empty string
|
57 |
+
return ""
|
58 |
+
|
59 |
+
@staticmethod
|
60 |
+
def clean_text(text: str) -> str:
|
61 |
+
# Remove excessive whitespace, fix line breaks, basic formatting recovery
|
62 |
+
text = re.sub(r'\s+', ' ', text)
|
63 |
+
text = re.sub(r'\n+', '\n', text)
|
64 |
+
return text.strip()
|
65 |
+
|
66 |
+
# ========== Phase 2: Advanced LLM Integration ==========
|
67 |
+
class ImprovedLLMEnsemble:
|
68 |
+
"""Smart LLM ensemble with fallback strategy instead of calling all APIs"""
|
69 |
+
def __init__(self, groq_api_key: Optional[str] = None, cohere_api_key: Optional[str] = None):
|
70 |
+
self.groq_api_key = groq_api_key
|
71 |
+
self.cohere_api_key = cohere_api_key
|
72 |
+
self.llm_endpoints = [
|
73 |
+
("Groq (Llama3-70B)", self.query_groq),
|
74 |
+
("Together (Mixtral)", self.query_huggingface),
|
75 |
+
("Together (CodeLlama)", self.query_together),
|
76 |
+
("Cohere", self.query_cohere)
|
77 |
+
]
|
78 |
+
self.success_rates = {}
|
79 |
+
self.response_times = {}
|
80 |
+
|
81 |
+
def query_groq(self, prompt: str) -> Optional[str]:
|
82 |
+
print("[LLMEnsemble] Calling Groq API...")
|
83 |
+
if not self.groq_api_key:
|
84 |
+
print("[LLMEnsemble] Groq API key not provided. Skipping Groq API call.")
|
85 |
+
return None
|
86 |
+
url = "https://api.groq.com/openai/v1/chat/completions"
|
87 |
+
headers = {"Authorization": f"Bearer {self.groq_api_key}", "Content-Type": "application/json"}
|
88 |
+
data = {
|
89 |
+
"model": "llama3-70b-8192", # Best free Groq model
|
90 |
+
"messages": [{"role": "user", "content": prompt}],
|
91 |
+
"temperature": 0.1,
|
92 |
+
"max_tokens": 1000
|
93 |
+
}
|
94 |
+
try:
|
95 |
+
r = requests.post(url, headers=headers, json=data, timeout=30)
|
96 |
+
print(f"[LLMEnsemble] Groq API response status: {r.status_code}")
|
97 |
+
if r.status_code == 200:
|
98 |
+
print("[LLMEnsemble] Groq API returned a response.")
|
99 |
+
return r.json()["choices"][0]["message"]["content"]
|
100 |
+
except Exception as e:
|
101 |
+
print(f"[LLMEnsemble] Groq API call failed: {e}")
|
102 |
+
return None
|
103 |
+
|
104 |
+
def query_huggingface(self, prompt: str) -> Optional[str]:
|
105 |
+
# Now using Together AI API for Mixtral-8x7B-Instruct-v0.1
|
106 |
+
print("[LLMEnsemble] Calling Together AI API for Mixtral-8x7B-Instruct-v0.1...")
|
107 |
+
together_api_key = os.getenv("TOGETHER_API_KEY")
|
108 |
+
url = "https://api.together.xyz/v1/chat/completions"
|
109 |
+
headers = {"Content-Type": "application/json"}
|
110 |
+
if together_api_key:
|
111 |
+
headers["Authorization"] = f"Bearer {together_api_key}"
|
112 |
+
data = {
|
113 |
+
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
114 |
+
"messages": [{"role": "user", "content": prompt}],
|
115 |
+
"temperature": 0.1,
|
116 |
+
"max_tokens": 1000
|
117 |
+
}
|
118 |
+
try:
|
119 |
+
r = requests.post(url, headers=headers, json=data, timeout=30)
|
120 |
+
print(f"[LLMEnsemble] Together AI (Mixtral) API response status: {r.status_code}")
|
121 |
+
if r.status_code == 200:
|
122 |
+
print("[LLMEnsemble] Together AI (Mixtral) API returned a response.")
|
123 |
+
return r.json()["choices"][0]["message"]["content"]
|
124 |
+
except Exception as e:
|
125 |
+
print(f"[LLMEnsemble] Together AI (Mixtral) API call failed: {e}")
|
126 |
+
return None
|
127 |
+
|
128 |
+
def query_together(self, prompt: str) -> Optional[str]:
|
129 |
+
print("[LLMEnsemble] Calling Together.ai API...")
|
130 |
+
url = "https://api.together.xyz/v1/chat/completions"
|
131 |
+
headers = {"Content-Type": "application/json"}
|
132 |
+
data = {
|
133 |
+
"model": "codellama/CodeLlama-34b-Instruct-hf",
|
134 |
+
"messages": [{"role": "user", "content": prompt}],
|
135 |
+
"temperature": 0.1,
|
136 |
+
"max_tokens": 1000
|
137 |
+
}
|
138 |
+
try:
|
139 |
+
r = requests.post(url, headers=headers, json=data, timeout=30)
|
140 |
+
print(f"[LLMEnsemble] Together.ai API response status: {r.status_code}")
|
141 |
+
if r.status_code == 200:
|
142 |
+
print("[LLMEnsemble] Together.ai API returned a response.")
|
143 |
+
return r.json()["choices"][0]["message"]["content"]
|
144 |
+
except Exception as e:
|
145 |
+
print(f"[LLMEnsemble] Together.ai API call failed: {e}")
|
146 |
+
return None
|
147 |
+
|
148 |
+
def query_cohere(self, prompt: str) -> Optional[str]:
|
149 |
+
print("[LLMEnsemble] Calling Cohere API...")
|
150 |
+
if not self.cohere_api_key:
|
151 |
+
print("[LLMEnsemble] Cohere API key not provided. Skipping Cohere API call.")
|
152 |
+
return None
|
153 |
+
url = "https://api.cohere.ai/v1/generate"
|
154 |
+
headers = {"Authorization": f"Bearer {self.cohere_api_key}", "Content-Type": "application/json"}
|
155 |
+
data = {"model": "command", "prompt": prompt, "max_tokens": 500}
|
156 |
+
try:
|
157 |
+
r = requests.post(url, headers=headers, json=data, timeout=30)
|
158 |
+
print(f"[LLMEnsemble] Cohere API response status: {r.status_code}")
|
159 |
+
if r.status_code == 200:
|
160 |
+
print("[LLMEnsemble] Cohere API returned a response.")
|
161 |
+
return r.json()["generations"][0]["text"]
|
162 |
+
except Exception as e:
|
163 |
+
print(f"[LLMEnsemble] Cohere API call failed: {e}")
|
164 |
+
return None
|
165 |
+
|
166 |
+
def advanced_prompt(self, resume_text: str, job_description: str) -> str:
|
167 |
+
# Chain-of-thought, few-shot, JSON schema
|
168 |
+
return f"""
|
169 |
+
Analyze the following resume and job description for compatibility. Provide a JSON with:
|
170 |
+
- compatibility_score (0-100)
|
171 |
+
- strengths (list)
|
172 |
+
- gaps (list)
|
173 |
+
- recommendations (list)
|
174 |
+
|
175 |
+
RESUME: {resume_text[:2000]}
|
176 |
+
JOB DESCRIPTION: {job_description[:2000]}
|
177 |
+
"""
|
178 |
+
|
179 |
+
def get_smart_response(self, resume_text: str, job_description: str, strategy: str = "fallback") -> Dict[str, Any]:
|
180 |
+
prompt = self.advanced_prompt(resume_text, job_description)
|
181 |
+
if strategy == "fallback":
|
182 |
+
return self._fallback_strategy(prompt)
|
183 |
+
elif strategy == "ensemble":
|
184 |
+
return self._ensemble_strategy(prompt)
|
185 |
+
elif strategy == "best":
|
186 |
+
return self._best_api_strategy(prompt)
|
187 |
+
else:
|
188 |
+
raise ValueError(f"Unknown strategy: {strategy}")
|
189 |
+
|
190 |
+
def _fallback_strategy(self, prompt: str) -> Dict[str, Any]:
|
191 |
+
for api_name, api_func in self.llm_endpoints:
|
192 |
+
print(f"[LLM] Trying {api_name}...")
|
193 |
+
try:
|
194 |
+
start_time = time.time()
|
195 |
+
response = api_func(prompt)
|
196 |
+
response_time = time.time() - start_time
|
197 |
+
if response:
|
198 |
+
parsed_response = self._parse_and_validate_response(response)
|
199 |
+
if parsed_response:
|
200 |
+
self._update_success_rate(api_name, True, response_time)
|
201 |
+
print(f"[LLM] ✅ {api_name} succeeded in {response_time:.2f}s")
|
202 |
+
return {**parsed_response, "api_used": api_name, "response_time": response_time}
|
203 |
+
self._update_success_rate(api_name, False, response_time)
|
204 |
+
except Exception as e:
|
205 |
+
print(f"[LLM] ❌ {api_name} failed: {e}")
|
206 |
+
self._update_success_rate(api_name, False, 0)
|
207 |
+
continue
|
208 |
+
print("[LLM] ⚠️ All APIs failed, using default response")
|
209 |
+
return self._get_default_response()
|
210 |
+
|
211 |
+
def _ensemble_strategy(self, prompt: str, max_apis: int = 2) -> Dict[str, Any]:
|
212 |
+
responses = []
|
213 |
+
apis_called = 0
|
214 |
+
for api_name, api_func in self.llm_endpoints:
|
215 |
+
if apis_called >= max_apis:
|
216 |
+
break
|
217 |
+
try:
|
218 |
+
response = api_func(prompt)
|
219 |
+
if response:
|
220 |
+
parsed = self._parse_and_validate_response(response)
|
221 |
+
if parsed:
|
222 |
+
responses.append({**parsed, "api_name": api_name})
|
223 |
+
apis_called += 1
|
224 |
+
except Exception as e:
|
225 |
+
print(f"[LLM] {api_name} failed: {e}")
|
226 |
+
continue
|
227 |
+
if not responses:
|
228 |
+
return self._get_default_response()
|
229 |
+
return self._aggregate_responses(responses)
|
230 |
+
|
231 |
+
def _best_api_strategy(self, prompt: str) -> Dict[str, Any]:
|
232 |
+
if not self.success_rates:
|
233 |
+
return self._fallback_strategy(prompt)
|
234 |
+
best_api = max(self.success_rates.keys(), key=lambda x: self.success_rates[x]["success_rate"] - sum(self.response_times.get(x, [10]))/max(len(self.response_times.get(x, [1])),1))
|
235 |
+
api_func = None
|
236 |
+
for api_name, func in self.llm_endpoints:
|
237 |
+
if api_name == best_api:
|
238 |
+
api_func = func
|
239 |
+
break
|
240 |
+
if api_func:
|
241 |
+
try:
|
242 |
+
response = api_func(prompt)
|
243 |
+
if response:
|
244 |
+
parsed = self._parse_and_validate_response(response)
|
245 |
+
if parsed:
|
246 |
+
return {**parsed, "api_used": best_api}
|
247 |
+
except Exception:
|
248 |
+
pass
|
249 |
+
return self._fallback_strategy(prompt)
|
250 |
+
|
251 |
+
def _parse_and_validate_response(self, response: str) -> Optional[Dict[str, Any]]:
|
252 |
+
try:
|
253 |
+
import json
|
254 |
+
import re
|
255 |
+
json_match = re.search(r'\{.*\}', response, re.DOTALL)
|
256 |
+
if not json_match:
|
257 |
+
return None
|
258 |
+
json_str = json_match.group()
|
259 |
+
parsed = json.loads(json_str)
|
260 |
+
required_fields = ["compatibility_score", "strengths", "gaps", "recommendations"]
|
261 |
+
if not all(field in parsed for field in required_fields):
|
262 |
+
return None
|
263 |
+
score = parsed.get("compatibility_score", 0)
|
264 |
+
if not (0 <= score <= 100):
|
265 |
+
return None
|
266 |
+
return parsed
|
267 |
+
except Exception as e:
|
268 |
+
print(f"[LLM] JSON parsing failed: {e}")
|
269 |
+
return None
|
270 |
+
|
271 |
+
def _aggregate_responses(self, responses: List[Dict[str, Any]]) -> Dict[str, Any]:
|
272 |
+
if len(responses) == 1:
|
273 |
+
return responses[0]
|
274 |
+
scores = [r.get("compatibility_score", 0) for r in responses]
|
275 |
+
avg_score = sum(scores) / len(scores)
|
276 |
+
all_strengths = []
|
277 |
+
all_gaps = []
|
278 |
+
all_recommendations = []
|
279 |
+
for r in responses:
|
280 |
+
all_strengths.extend(r.get("strengths", []))
|
281 |
+
all_gaps.extend(r.get("gaps", []))
|
282 |
+
all_recommendations.extend(r.get("recommendations", []))
|
283 |
+
def dedupe_list(lst):
|
284 |
+
seen = set()
|
285 |
+
result = []
|
286 |
+
for item in lst:
|
287 |
+
if item not in seen:
|
288 |
+
seen.add(item)
|
289 |
+
result.append(item)
|
290 |
+
return result
|
291 |
+
return {
|
292 |
+
"compatibility_score": avg_score,
|
293 |
+
"strengths": dedupe_list(all_strengths),
|
294 |
+
"gaps": dedupe_list(all_gaps),
|
295 |
+
"recommendations": dedupe_list(all_recommendations),
|
296 |
+
"apis_used": [r.get("api_name", "unknown") for r in responses],
|
297 |
+
"ensemble_size": len(responses)
|
298 |
+
}
|
299 |
+
|
300 |
+
def _update_success_rate(self, api_name: str, success: bool, response_time: float):
|
301 |
+
if api_name not in self.success_rates:
|
302 |
+
self.success_rates[api_name] = {"successes": 0, "total": 0}
|
303 |
+
self.success_rates[api_name]["total"] += 1
|
304 |
+
if success:
|
305 |
+
self.success_rates[api_name]["successes"] += 1
|
306 |
+
total = self.success_rates[api_name]["total"]
|
307 |
+
successes = self.success_rates[api_name]["successes"]
|
308 |
+
self.success_rates[api_name]["success_rate"] = successes / total
|
309 |
+
if response_time > 0:
|
310 |
+
if api_name not in self.response_times:
|
311 |
+
self.response_times[api_name] = []
|
312 |
+
self.response_times[api_name].append(response_time)
|
313 |
+
self.response_times[api_name] = self.response_times[api_name][-10:]
|
314 |
+
|
315 |
+
def _get_default_response(self) -> Dict[str, Any]:
|
316 |
+
return {
|
317 |
+
"compatibility_score": 50,
|
318 |
+
"strengths": ["Unable to analyze - API unavailable"],
|
319 |
+
"gaps": ["Unable to analyze - API unavailable"],
|
320 |
+
"recommendations": ["Please try again later or check API keys"],
|
321 |
+
"api_used": "default",
|
322 |
+
"error": "All LLM APIs failed"
|
323 |
+
}
|
324 |
+
|
325 |
+
def get_api_stats(self) -> Dict[str, Any]:
|
326 |
+
stats = {}
|
327 |
+
for api_name in self.success_rates:
|
328 |
+
stats[api_name] = {
|
329 |
+
"success_rate": self.success_rates[api_name]["success_rate"],
|
330 |
+
"total_calls": self.success_rates[api_name]["total"],
|
331 |
+
"avg_response_time": sum(self.response_times.get(api_name, [0])) / len(self.response_times.get(api_name, [1]))
|
332 |
+
}
|
333 |
+
return stats
|
334 |
+
|
335 |
+
# ========== Phase 3: BERT-Based Semantic Enhancement ==========
|
336 |
+
class EnhancedBERTSemanticEngine:
|
337 |
+
"""
|
338 |
+
Enhanced BERT engine with specialized models for resume/job matching
|
339 |
+
"""
|
340 |
+
def __init__(self, resume_bert_model: Optional[str] = None, load_specialized_models: bool = True):
|
341 |
+
self.semantic_model = SentenceTransformer('all-MiniLM-L6-v2')
|
342 |
+
self.distilbert_tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
|
343 |
+
self.distilbert_model = DistilBertModel.from_pretrained('distilbert-base-uncased')
|
344 |
+
self.resume_bert_model = None
|
345 |
+
self.resume_model_name = None
|
346 |
+
if resume_bert_model:
|
347 |
+
self.resume_bert_model = self._load_resume_model(resume_bert_model)
|
348 |
+
self.resume_model_name = resume_bert_model
|
349 |
+
if self.resume_bert_model is None and load_specialized_models:
|
350 |
+
self.resume_bert_model, self.resume_model_name = self._load_best_available_resume_model()
|
351 |
+
self.specialized_models = {}
|
352 |
+
if load_specialized_models:
|
353 |
+
self._load_specialized_models()
|
354 |
+
|
355 |
+
def _load_resume_model(self, model_name: str) -> Optional[SentenceTransformer]:
|
356 |
+
try:
|
357 |
+
print(f"[BERT] Loading resume-specific model: {model_name}")
|
358 |
+
model = SentenceTransformer(model_name)
|
359 |
+
print(f"[BERT] ✅ Successfully loaded: {model_name}")
|
360 |
+
return model
|
361 |
+
except Exception as e:
|
362 |
+
print(f"[BERT] ❌ Failed to load {model_name}: {e}")
|
363 |
+
return None
|
364 |
+
|
365 |
+
def _load_best_available_resume_model(self) -> tuple[Optional[SentenceTransformer], Optional[str]]:
|
366 |
+
candidate_models = [
|
367 |
+
"sentence-transformers/all-mpnet-base-v2",
|
368 |
+
"sentence-transformers/all-roberta-large-v1",
|
369 |
+
"nlpaueb/legal-bert-base-uncased",
|
370 |
+
"ProsusAI/finbert",
|
371 |
+
"sentence-transformers/multi-qa-mpnet-base-dot-v1",
|
372 |
+
"sentence-transformers/all-distilroberta-v1",
|
373 |
+
"sentence-transformers/paraphrase-mpnet-base-v2"
|
374 |
+
]
|
375 |
+
for model_name in candidate_models:
|
376 |
+
model = self._load_resume_model(model_name)
|
377 |
+
if model is not None:
|
378 |
+
print(f"[BERT] 🎯 Using {model_name} as resume-specific model")
|
379 |
+
return model, model_name
|
380 |
+
print("[BERT] ⚠️ No specialized resume model could be loaded")
|
381 |
+
return None, None
|
382 |
+
|
383 |
+
def _load_specialized_models(self):
|
384 |
+
specialized_candidates = {
|
385 |
+
"business_model": [
|
386 |
+
"sentence-transformers/all-mpnet-base-v2",
|
387 |
+
"ProsusAI/finbert"
|
388 |
+
],
|
389 |
+
"technical_model": [
|
390 |
+
"sentence-transformers/all-roberta-large-v1",
|
391 |
+
"microsoft/codebert-base"
|
392 |
+
],
|
393 |
+
"quality_model": [
|
394 |
+
"sentence-transformers/paraphrase-mpnet-base-v2",
|
395 |
+
"sentence-transformers/multi-qa-mpnet-base-dot-v1"
|
396 |
+
]
|
397 |
+
}
|
398 |
+
for category, models in specialized_candidates.items():
|
399 |
+
for model_name in models:
|
400 |
+
try:
|
401 |
+
model = SentenceTransformer(model_name)
|
402 |
+
self.specialized_models[category] = {
|
403 |
+
'model': model,
|
404 |
+
'name': model_name
|
405 |
+
}
|
406 |
+
print(f"[BERT] ✅ Loaded {category}: {model_name}")
|
407 |
+
break
|
408 |
+
except Exception as e:
|
409 |
+
print(f"[BERT] ❌ Failed to load {model_name}: {e}")
|
410 |
+
continue
|
411 |
+
|
412 |
+
def semantic_similarity(self, text1: str, text2: str) -> float:
|
413 |
+
emb1 = self.semantic_model.encode(text1, convert_to_tensor=True)
|
414 |
+
emb2 = self.semantic_model.encode(text2, convert_to_tensor=True)
|
415 |
+
score = float(util.pytorch_cos_sim(emb1, emb2).item())
|
416 |
+
return score
|
417 |
+
|
418 |
+
def resume_specific_similarity(self, text1: str, text2: str) -> Optional[float]:
|
419 |
+
if self.resume_bert_model:
|
420 |
+
try:
|
421 |
+
emb1 = self.resume_bert_model.encode(text1, convert_to_tensor=True)
|
422 |
+
emb2 = self.resume_bert_model.encode(text2, convert_to_tensor=True)
|
423 |
+
score = float(util.pytorch_cos_sim(emb1, emb2).item())
|
424 |
+
print(f"[BERT] Resume-specific similarity: {score:.4f} using {self.resume_model_name}")
|
425 |
+
return score
|
426 |
+
except Exception as e:
|
427 |
+
print(f"[BERT] Error in resume-specific similarity: {e}")
|
428 |
+
return None
|
429 |
+
print("[BERT] No resume-specific model available")
|
430 |
+
return None
|
431 |
+
|
432 |
+
def ensemble_resume_similarity(self, resume_text: str, job_description: str) -> Dict[str, Any]:
|
433 |
+
scores = {}
|
434 |
+
model_details = {}
|
435 |
+
try:
|
436 |
+
scores['semantic_base'] = self.semantic_similarity(resume_text, job_description)
|
437 |
+
model_details['semantic_base'] = 'all-MiniLM-L6-v2'
|
438 |
+
except Exception as e:
|
439 |
+
print(f"[BERT] Error with base semantic model: {e}")
|
440 |
+
resume_score = self.resume_specific_similarity(resume_text, job_description)
|
441 |
+
if resume_score is not None:
|
442 |
+
scores['resume_specific'] = resume_score
|
443 |
+
model_details['resume_specific'] = self.resume_model_name
|
444 |
+
for category, model_info in self.specialized_models.items():
|
445 |
+
try:
|
446 |
+
model = model_info['model']
|
447 |
+
emb1 = model.encode(resume_text, convert_to_tensor=True)
|
448 |
+
emb2 = model.encode(job_description, convert_to_tensor=True)
|
449 |
+
score = float(util.pytorch_cos_sim(emb1, emb2).item()) # Convert numpy.float to Python float
|
450 |
+
scores[category] = score
|
451 |
+
model_details[category] = model_info['name']
|
452 |
+
print(f"[BERT] {category} similarity: {score:.4f}")
|
453 |
+
except Exception as e:
|
454 |
+
print(f"[BERT] Error with {category} model: {e}")
|
455 |
+
continue
|
456 |
+
|
457 |
+
# Automatically select the best model based on highest similarity score
|
458 |
+
best_model = self._select_best_model(scores, model_details)
|
459 |
+
|
460 |
+
ensemble_score = self._calculate_ensemble_score(scores)
|
461 |
+
domain_analysis = self._analyze_domain_suitability(resume_text, job_description)
|
462 |
+
return {
|
463 |
+
'individual_scores': scores,
|
464 |
+
'model_details': model_details,
|
465 |
+
'ensemble_score': ensemble_score,
|
466 |
+
'domain_analysis': domain_analysis,
|
467 |
+
'models_used': len(scores),
|
468 |
+
'primary_resume_model': self.resume_model_name,
|
469 |
+
'best_model': best_model,
|
470 |
+
'confidence': self._calculate_confidence(scores)
|
471 |
+
}
|
472 |
+
|
473 |
+
def _select_best_model(self, scores: Dict[str, float], model_details: Dict[str, str]) -> Dict[str, Any]:
|
474 |
+
"""Automatically select the best model based on highest similarity score"""
|
475 |
+
if not scores:
|
476 |
+
return {"model_name": "none", "score": 0.0, "category": "none"}
|
477 |
+
|
478 |
+
# Find the model with the highest score
|
479 |
+
best_category = max(scores.keys(), key=lambda k: scores[k])
|
480 |
+
best_score = scores[best_category]
|
481 |
+
best_model_name = model_details.get(best_category, best_category)
|
482 |
+
|
483 |
+
print(f"[BERT] 🎯 Best model selected: {best_category} ({best_model_name}) with score: {best_score:.4f}")
|
484 |
+
|
485 |
+
return {
|
486 |
+
"model_name": best_model_name,
|
487 |
+
"score": best_score,
|
488 |
+
"category": best_category,
|
489 |
+
"all_scores": scores,
|
490 |
+
"all_models": model_details
|
491 |
+
}
|
492 |
+
|
493 |
+
def _calculate_ensemble_score(self, scores: Dict[str, float]) -> float:
|
494 |
+
if not scores:
|
495 |
+
return 0.0
|
496 |
+
weights = {
|
497 |
+
'semantic_base': 0.2,
|
498 |
+
'resume_specific': 0.35,
|
499 |
+
'business_model': 0.25,
|
500 |
+
'technical_model': 0.15,
|
501 |
+
'quality_model': 0.2
|
502 |
+
}
|
503 |
+
weighted_sum = 0.0
|
504 |
+
total_weight = 0.0
|
505 |
+
for score_type, score in scores.items():
|
506 |
+
weight = weights.get(score_type, 0.1)
|
507 |
+
weighted_sum += weight * score
|
508 |
+
total_weight += weight
|
509 |
+
return weighted_sum / total_weight if total_weight > 0 else np.mean(list(scores.values()))
|
510 |
+
|
511 |
+
def _analyze_domain_suitability(self, resume_text: str, job_description: str) -> Dict[str, Any]:
|
512 |
+
resume_lower = resume_text.lower()
|
513 |
+
job_lower = job_description.lower()
|
514 |
+
tech_keywords = [
|
515 |
+
'python', 'java', 'javascript', 'programming', 'software', 'developer',
|
516 |
+
'algorithm', 'database', 'api', 'framework', 'cloud', 'machine learning',
|
517 |
+
'ai', 'data science', 'devops', 'kubernetes', 'docker'
|
518 |
+
]
|
519 |
+
business_keywords = [
|
520 |
+
'finance', 'accounting', 'business', 'management', 'strategy', 'marketing',
|
521 |
+
'sales', 'consulting', 'operations', 'project management', 'leadership'
|
522 |
+
]
|
523 |
+
legal_keywords = [
|
524 |
+
'legal', 'compliance', 'regulation', 'policy', 'governance', 'audit',
|
525 |
+
'risk management', 'contract', 'intellectual property'
|
526 |
+
]
|
527 |
+
tech_score = sum(1 for keyword in tech_keywords if keyword in resume_lower or keyword in job_lower)
|
528 |
+
business_score = sum(1 for keyword in business_keywords if keyword in resume_lower or keyword in job_lower)
|
529 |
+
legal_score = sum(1 for keyword in legal_keywords if keyword in resume_lower or keyword in job_lower)
|
530 |
+
max_score = max(tech_score, business_score, legal_score)
|
531 |
+
if max_score == 0:
|
532 |
+
primary_domain = 'general'
|
533 |
+
elif tech_score == max_score:
|
534 |
+
primary_domain = 'technical'
|
535 |
+
elif business_score == max_score:
|
536 |
+
primary_domain = 'business'
|
537 |
+
else:
|
538 |
+
primary_domain = 'legal'
|
539 |
+
return {
|
540 |
+
'primary_domain': primary_domain,
|
541 |
+
'domain_scores': {
|
542 |
+
'technical': tech_score,
|
543 |
+
'business': business_score,
|
544 |
+
'legal': legal_score
|
545 |
+
},
|
546 |
+
'specialization_strength': float(max_score / (len(resume_text.split()) + len(job_description.split())) * 1000) # Convert to Python float
|
547 |
+
}
|
548 |
+
|
549 |
+
def _calculate_confidence(self, scores: Dict[str, float]) -> float:
|
550 |
+
if not scores:
|
551 |
+
return 0.0
|
552 |
+
model_confidence = min(len(scores) / 4.0, 1.0)
|
553 |
+
score_values = list(scores.values())
|
554 |
+
if len(score_values) > 1:
|
555 |
+
consistency = 1.0 - min(float(np.std(score_values)), 0.5) * 2 # Convert numpy.float to Python float
|
556 |
+
else:
|
557 |
+
consistency = 0.7
|
558 |
+
resume_model_bonus = 0.1 if 'resume_specific' in scores else 0.0
|
559 |
+
return min(1.0, (model_confidence * 0.4 + consistency * 0.5 + resume_model_bonus + 0.1))
|
560 |
+
|
561 |
+
def context_embedding(self, text: str) -> np.ndarray:
|
562 |
+
inputs = self.distilbert_tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
563 |
+
with torch.no_grad():
|
564 |
+
outputs = self.distilbert_model(**inputs)
|
565 |
+
cls_embedding = outputs.last_hidden_state[:, 0, :].cpu().numpy()
|
566 |
+
return cls_embedding[0].tolist() # Convert numpy array to list
|
567 |
+
|
568 |
+
def skills_similarity(self, skills1: List[str], skills2: List[str]) -> float:
|
569 |
+
if not skills1 or not skills2:
|
570 |
+
return 0.0
|
571 |
+
model_to_use = self.resume_bert_model if self.resume_bert_model else self.semantic_model
|
572 |
+
emb1 = model_to_use.encode(skills1, convert_to_tensor=True)
|
573 |
+
emb2 = model_to_use.encode(skills2, convert_to_tensor=True)
|
574 |
+
sim_matrix = util.pytorch_cos_sim(emb1, emb2)
|
575 |
+
best_sim_1 = float(sim_matrix.max(dim=1).values.mean().item()) # Convert numpy.float to Python float
|
576 |
+
best_sim_2 = float(sim_matrix.max(dim=0).values.mean().item()) # Convert numpy.float to Python float
|
577 |
+
semantic_skill_sim = (best_sim_1 + best_sim_2) / 2
|
578 |
+
from fuzzywuzzy import fuzz
|
579 |
+
fuzzy_matches = 0
|
580 |
+
total_comparisons = 0
|
581 |
+
for skill1 in skills1:
|
582 |
+
for skill2 in skills2:
|
583 |
+
similarity_ratio = fuzz.ratio(skill1.lower(), skill2.lower()) / 100.0
|
584 |
+
fuzzy_matches += similarity_ratio
|
585 |
+
total_comparisons += 1
|
586 |
+
fuzzy_skill_sim = fuzzy_matches / total_comparisons if total_comparisons > 0 else 0.0
|
587 |
+
set1 = set(skill.lower() for skill in skills1)
|
588 |
+
set2 = set(skill.lower() for skill in skills2)
|
589 |
+
jaccard_sim = len(set1.intersection(set2)) / len(set1.union(set2)) if set1.union(set2) else 0.0
|
590 |
+
final_score = (0.5 * semantic_skill_sim + 0.3 * fuzzy_skill_sim + 0.2 * jaccard_sim)
|
591 |
+
skill_coverage_bonus = min(len(set1.intersection(set2)) / max(len(set1), len(set2), 1) * 0.1, 0.2)
|
592 |
+
return min(1.0, final_score + skill_coverage_bonus)
|
593 |
+
|
594 |
+
def get_model_info(self) -> Dict[str, Any]:
|
595 |
+
return {
|
596 |
+
'primary_semantic_model': 'all-MiniLM-L6-v2',
|
597 |
+
'resume_specific_model': self.resume_model_name,
|
598 |
+
'specialized_models': {k: v['name'] for k, v in self.specialized_models.items()},
|
599 |
+
'total_models_loaded': 1 + (1 if self.resume_bert_model else 0) + len(self.specialized_models),
|
600 |
+
'resume_model_available': self.resume_bert_model is not None
|
601 |
+
}
|
602 |
+
|
603 |
+
# ========== Phase 4: Dynamic Skills System ==========
|
604 |
+
class SkillsExtractor:
|
605 |
+
"""Extracts and matches skills using NER, fuzzy matching, and context classification."""
|
606 |
+
def __init__(self, skill_db: Optional[List[str]] = None):
|
607 |
+
# Optionally load a dynamic skills database
|
608 |
+
self.skill_db = skill_db or [
|
609 |
+
# Programming Languages
|
610 |
+
"python", "java", "javascript", "typescript", "c++", "c#", "php", "ruby", "go", "rust", "scala", "kotlin", "swift",
|
611 |
+
# Web Technologies
|
612 |
+
"react", "angular", "vue", "html", "css", "sass", "less", "bootstrap", "tailwind", "jquery",
|
613 |
+
# Backend Frameworks
|
614 |
+
"django", "flask", "fastapi", "spring", "express", "node.js", "laravel", "rails",
|
615 |
+
# Databases
|
616 |
+
"sql", "mysql", "postgresql", "mongodb", "redis", "elasticsearch", "sqlite", "oracle",
|
617 |
+
# Cloud & DevOps
|
618 |
+
"aws", "azure", "gcp", "docker", "kubernetes", "jenkins", "git", "terraform", "ansible",
|
619 |
+
# Data Science & ML
|
620 |
+
"machine learning", "deep learning", "ai", "data science", "nlp", "computer vision",
|
621 |
+
"pandas", "numpy", "scikit-learn", "tensorflow", "pytorch", "keras", "jupyter",
|
622 |
+
# Other Technologies
|
623 |
+
"api", "rest", "graphql", "microservices", "agile", "scrum", "ci/cd", "testing",
|
624 |
+
"linux", "bash", "powershell", "nginx", "apache", "redis", "rabbitmq"
|
625 |
+
]
|
626 |
+
|
627 |
+
def extract_skills(self, text: str) -> List[str]:
|
628 |
+
doc = nlp(text)
|
629 |
+
# Extract entities labeled as ORG, PRODUCT, SKILL, etc.
|
630 |
+
skills = [ent.text for ent in doc.ents if ent.label_ in ("ORG", "PRODUCT", "SKILL", "WORK_OF_ART")]
|
631 |
+
|
632 |
+
# Enhanced fuzzy matching with better thresholds
|
633 |
+
matched_skills = set()
|
634 |
+
text_lower = text.lower()
|
635 |
+
|
636 |
+
for skill in self.skill_db:
|
637 |
+
skill_lower = skill.lower()
|
638 |
+
# Multiple matching strategies
|
639 |
+
if (skill_lower in text_lower or
|
640 |
+
fuzz.partial_ratio(skill_lower, text_lower) > 80 or
|
641 |
+
fuzz.token_sort_ratio(skill_lower, text_lower) > 85):
|
642 |
+
matched_skills.add(skill)
|
643 |
+
|
644 |
+
# Add NER skills if they are close to known skills
|
645 |
+
for s in skills:
|
646 |
+
if len(s) > 2: # Avoid very short matches
|
647 |
+
match, score = fuzzy_process.extractOne(s, self.skill_db)
|
648 |
+
if score > 75: # Lower threshold for better recall
|
649 |
+
matched_skills.add(match)
|
650 |
+
|
651 |
+
# Add common programming languages and technologies that might be missed
|
652 |
+
tech_patterns = [
|
653 |
+
r'\b(python|java|javascript|js|react|angular|vue|node|sql|mysql|postgresql|mongodb|aws|azure|gcp|docker|kubernetes|git|html|css|api|rest|graphql|machine learning|ml|ai|data science|pandas|numpy|scikit-learn|tensorflow|pytorch|django|flask|spring|express)\b'
|
654 |
+
]
|
655 |
+
|
656 |
+
for pattern in tech_patterns:
|
657 |
+
matches = re.findall(pattern, text_lower)
|
658 |
+
for match in matches:
|
659 |
+
if match in [s.lower() for s in self.skill_db]:
|
660 |
+
matched_skills.add(next(s for s in self.skill_db if s.lower() == match))
|
661 |
+
|
662 |
+
return list(matched_skills)
|
663 |
+
|
664 |
+
def classify_skill_context(self, text: str, skill: str) -> str:
|
665 |
+
# Simple context classification: required, optional, mentioned
|
666 |
+
text = text.lower()
|
667 |
+
skill = skill.lower()
|
668 |
+
if f"required: {skill}" in text or f"must have {skill}" in text:
|
669 |
+
return "required"
|
670 |
+
elif f"preferred: {skill}" in text or f"nice to have {skill}" in text:
|
671 |
+
return "optional"
|
672 |
+
elif skill in text:
|
673 |
+
return "mentioned"
|
674 |
+
return "none"
|
675 |
+
|
676 |
+
# ========== CORRECTED Skills Extractor ==========
|
677 |
+
class ImprovedSkillsExtractor(SkillsExtractor):
|
678 |
+
"""Enhanced skills extraction with better matching and AI/ML focus"""
|
679 |
+
def __init__(self, skill_db: Optional[List[str]] = None):
|
680 |
+
super().__init__(skill_db)
|
681 |
+
|
682 |
+
# Enhanced skill patterns from JavaScript code
|
683 |
+
self.skill_patterns = {
|
684 |
+
# AI/ML Core Skills
|
685 |
+
'llm': ['llm', 'large language model', 'language model', 'gpt', 'chatgpt'],
|
686 |
+
'langchain': ['langchain', 'lang chain', 'langchain framework'],
|
687 |
+
'crewai': ['crewai', 'crew ai', 'crew-ai'],
|
688 |
+
'autogen': ['autogen', 'auto gen', 'auto-gen'],
|
689 |
+
'openai': ['openai', 'open ai', 'gpt-4', 'gpt4', 'chatgpt', 'gpt-3'],
|
690 |
+
'claude': ['claude', 'anthropic', 'claude-3', 'claude3'],
|
691 |
+
'mistral': ['mistral', 'mistral-7b', 'mistral-8x7b'],
|
692 |
+
'nlp': ['nlp', 'natural language processing', 'text processing', 'text analysis'],
|
693 |
+
'vector_search': ['vector search', 'faiss', 'pinecone', 'embeddings', 'similarity search', 'vector database'],
|
694 |
+
'speech_to_text': ['speech to text', 'whisper', 'speech recognition', 'asr', 'audio processing'],
|
695 |
+
'machine_learning': ['machine learning', 'ml', 'ai', 'artificial intelligence', 'predictive modeling'],
|
696 |
+
'transformers': ['transformers', 'bert', 'attention', 'hugging face', 'huggingface', 'transformer models'],
|
697 |
+
'pytorch': ['pytorch', 'torch', 'pytorch lightning'],
|
698 |
+
'tensorflow': ['tensorflow', 'tf', 'keras'],
|
699 |
+
'python': ['python', 'python3', 'python 3'],
|
700 |
+
'deep_learning': ['deep learning', 'neural networks', 'cnn', 'rnn', 'lstm', 'transformer'],
|
701 |
+
|
702 |
+
# Technical Skills
|
703 |
+
'api_integration': ['api', 'rest api', 'integration', 'web services', 'microservices'],
|
704 |
+
'caching': ['caching', 'redis', 'memcached', 'cache'],
|
705 |
+
'optimization': ['optimization', 'performance tuning', 'performance optimization'],
|
706 |
+
'frontend': ['frontend', 'react', 'javascript', 'typescript', 'vue', 'angular'],
|
707 |
+
'backend': ['backend', 'node.js', 'express', 'fastapi', 'flask', 'django', 'spring'],
|
708 |
+
'databases': ['database', 'sql', 'mongodb', 'postgresql', 'mysql', 'redis'],
|
709 |
+
'cloud': ['aws', 'azure', 'gcp', 'cloud', 'amazon web services', 'google cloud'],
|
710 |
+
'docker': ['docker', 'containerization', 'containers'],
|
711 |
+
'git': ['git', 'version control', 'github', 'gitlab'],
|
712 |
+
|
713 |
+
# Soft Skills
|
714 |
+
'collaboration': ['collaborate', 'team work', 'cross-functional', 'teamwork'],
|
715 |
+
'research': ['research', 'prototyping', 'experimentation', 'r&d'],
|
716 |
+
'problem_solving': ['problem solving', 'analytical', 'debugging', 'troubleshooting']
|
717 |
+
}
|
718 |
+
|
719 |
+
self.skill_relations = {
|
720 |
+
'llm': ['machine_learning', 'nlp', 'transformers', 'openai', 'claude'],
|
721 |
+
'langchain': ['llm', 'python', 'api_integration'],
|
722 |
+
'vector_search': ['machine_learning', 'python', 'databases'],
|
723 |
+
'nlp': ['machine_learning', 'python', 'transformers'],
|
724 |
+
'machine_learning': ['python', 'pytorch', 'tensorflow', 'deep_learning']
|
725 |
+
}
|
726 |
+
|
727 |
+
# Skill importance levels
|
728 |
+
self.high_importance = ['llm', 'langchain', 'crewai', 'nlp', 'python', 'machine_learning']
|
729 |
+
self.medium_importance = ['vector_search', 'openai', 'claude', 'transformers', 'pytorch']
|
730 |
+
|
731 |
+
def extract_skills(self, text: str) -> List[str]:
|
732 |
+
"""Enhanced skill extraction with pattern matching"""
|
733 |
+
text_lower = text.lower()
|
734 |
+
found_skills = set()
|
735 |
+
|
736 |
+
# Use parent class method for basic extraction
|
737 |
+
basic_skills = super().extract_skills(text)
|
738 |
+
found_skills.update(basic_skills)
|
739 |
+
|
740 |
+
# Enhanced pattern matching
|
741 |
+
for skill, patterns in self.skill_patterns.items():
|
742 |
+
for pattern in patterns:
|
743 |
+
if pattern in text_lower:
|
744 |
+
found_skills.add(skill)
|
745 |
+
break
|
746 |
+
|
747 |
+
# Add variations and related terms
|
748 |
+
for skill in list(found_skills):
|
749 |
+
if skill in self.skill_relations:
|
750 |
+
# Add related skills that might be mentioned
|
751 |
+
for related_skill in self.skill_relations[skill]:
|
752 |
+
if any(pattern in text_lower for pattern in self.skill_patterns.get(related_skill, [])):
|
753 |
+
found_skills.add(related_skill)
|
754 |
+
|
755 |
+
return list(found_skills)
|
756 |
+
|
757 |
+
def get_skill_importance(self, skill: str) -> str:
|
758 |
+
"""Determine skill importance level"""
|
759 |
+
if skill in self.high_importance:
|
760 |
+
return 'high'
|
761 |
+
elif skill in self.medium_importance:
|
762 |
+
return 'medium'
|
763 |
+
return 'low'
|
764 |
+
|
765 |
+
def calculate_skills_match(self, resume_skills: List[str], job_skills: List[str]) -> float:
|
766 |
+
"""Calculate skills match score with importance weighting"""
|
767 |
+
if not job_skills:
|
768 |
+
return 0.0
|
769 |
+
|
770 |
+
total_score = 0.0
|
771 |
+
weight_sum = 0.0
|
772 |
+
|
773 |
+
for job_skill in job_skills:
|
774 |
+
importance = self.get_skill_importance(job_skill)
|
775 |
+
weight = 3 if importance == 'high' else 2 if importance == 'medium' else 1
|
776 |
+
|
777 |
+
if job_skill in resume_skills:
|
778 |
+
total_score += weight * 1.0 # Perfect match
|
779 |
+
else:
|
780 |
+
# Check for related skills
|
781 |
+
related_score = self.get_related_skill_score(job_skill, resume_skills)
|
782 |
+
total_score += weight * related_score
|
783 |
+
|
784 |
+
weight_sum += weight
|
785 |
+
|
786 |
+
return total_score / weight_sum if weight_sum > 0 else 0.0
|
787 |
+
|
788 |
+
def get_related_skill_score(self, target_skill: str, available_skills: List[str]) -> float:
|
789 |
+
"""Get score for related skills when exact match not found"""
|
790 |
+
related_skills = self.skill_relations.get(target_skill, [])
|
791 |
+
match_count = sum(1 for skill in related_skills if skill in available_skills)
|
792 |
+
|
793 |
+
return min(0.7, match_count * 0.3) if match_count > 0 else 0.0
|
794 |
+
|
795 |
+
def generate_skills_diagnostics(self, resume_skills: List[str], job_skills: List[str]) -> Dict[str, Any]:
|
796 |
+
"""Generate diagnostic information about skills matching"""
|
797 |
+
resume_set = set(resume_skills)
|
798 |
+
job_set = set(job_skills)
|
799 |
+
|
800 |
+
# Calculate direct matches and missing skills
|
801 |
+
direct_matches = resume_set.intersection(job_set)
|
802 |
+
missing_skills = job_set - resume_set
|
803 |
+
|
804 |
+
# Find missing critical skills
|
805 |
+
critical_missing = [
|
806 |
+
skill for skill in job_skills
|
807 |
+
if self.get_skill_importance(skill) == 'high' and skill not in resume_set
|
808 |
+
]
|
809 |
+
|
810 |
+
# Find related skills that could compensate
|
811 |
+
related_compensations = {}
|
812 |
+
for missing_skill in critical_missing:
|
813 |
+
related = self.skill_relations.get(missing_skill, [])
|
814 |
+
available_related = [skill for skill in related if skill in resume_set]
|
815 |
+
if available_related:
|
816 |
+
related_compensations[missing_skill] = available_related
|
817 |
+
|
818 |
+
return {
|
819 |
+
'skills_gap': len(job_set) - len(direct_matches),
|
820 |
+
'critical_skills_missing': critical_missing,
|
821 |
+
'related_compensations': related_compensations,
|
822 |
+
'coverage_percentage': len(direct_matches) / len(job_set) if job_set else 0,
|
823 |
+
'resume_skills_count': len(resume_skills),
|
824 |
+
'job_skills_count': len(job_skills),
|
825 |
+
# Add fields that frontend expects
|
826 |
+
'direct_matches': list(direct_matches),
|
827 |
+
'direct_match_count': len(direct_matches),
|
828 |
+
'total_job_skills': len(job_set),
|
829 |
+
'missing_skills': list(missing_skills)
|
830 |
+
}
|
831 |
+
|
832 |
+
def generate_skills_recommendations(self, diagnostics: Dict[str, Any]) -> List[Dict[str, str]]:
|
833 |
+
"""Generate recommendations based on skills diagnostics"""
|
834 |
+
recommendations = []
|
835 |
+
|
836 |
+
if diagnostics['critical_skills_missing']:
|
837 |
+
missing_skills = diagnostics['critical_skills_missing']
|
838 |
+
recommendations.append({
|
839 |
+
'type': 'critical',
|
840 |
+
'title': 'Critical Skills Gap',
|
841 |
+
'description': f"Missing key skills: {', '.join(missing_skills)}. Consider highlighting related experience or pursuing certifications."
|
842 |
+
})
|
843 |
+
|
844 |
+
if diagnostics['coverage_percentage'] < 0.5:
|
845 |
+
recommendations.append({
|
846 |
+
'type': 'coverage',
|
847 |
+
'title': 'Low Skills Coverage',
|
848 |
+
'description': f"Only {diagnostics['coverage_percentage']*100:.1f}% of required skills found. Focus on acquiring missing core competencies."
|
849 |
+
})
|
850 |
+
|
851 |
+
if diagnostics['related_compensations']:
|
852 |
+
comp_skills = list(diagnostics['related_compensations'].keys())
|
853 |
+
recommendations.append({
|
854 |
+
'type': 'compensation',
|
855 |
+
'title': 'Related Skills Available',
|
856 |
+
'description': f"While missing {', '.join(comp_skills)}, you have related skills that could demonstrate transferable knowledge."
|
857 |
+
})
|
858 |
+
|
859 |
+
return recommendations
|
860 |
+
|
861 |
+
# ========== CORRECTED Multi-Layer Validation ==========
|
862 |
+
class CorrectedMultiLayerValidator:
|
863 |
+
"""Fixed scoring system with proper weighting and skill matching"""
|
864 |
+
def __init__(self):
|
865 |
+
# Adjusted weights - LLM gets higher weight since it's most accurate
|
866 |
+
self.similarity_weights_with_resume_bert = {
|
867 |
+
"semantic_score": 0.20, # Reduced - often too conservative
|
868 |
+
"skills_score": 0.30, # Increased - critical for tech roles
|
869 |
+
"llm_score": 0.40, # Increased - most comprehensive
|
870 |
+
"resume_bert_score": 0.10 # Reduced - good but not always reliable
|
871 |
+
}
|
872 |
+
self.similarity_weights_without_resume_bert = {
|
873 |
+
"semantic_score": 0.25, # Slightly higher when no resume BERT
|
874 |
+
"skills_score": 0.35, # Higher importance
|
875 |
+
"llm_score": 0.40, # Primary scorer
|
876 |
+
"resume_bert_score": 0.0
|
877 |
+
}
|
878 |
+
# Confidence calculation weights
|
879 |
+
self.confidence_weights = {
|
880 |
+
"semantic_score": 0.25,
|
881 |
+
"skills_score": 0.35,
|
882 |
+
"llm_score": 0.30,
|
883 |
+
"resume_bert_score": 0.10
|
884 |
+
}
|
885 |
+
def calculate_final_similarity(self, scores: Dict[str, float]) -> Dict[str, Any]:
|
886 |
+
"""Enhanced final similarity calculation with score validation"""
|
887 |
+
# Validate and potentially adjust individual scores
|
888 |
+
adjusted_scores = self._validate_and_adjust_scores(scores)
|
889 |
+
|
890 |
+
# Check if LLM score is high and adjust weights accordingly
|
891 |
+
llm_score = adjusted_scores.get("llm_score", 0)
|
892 |
+
if llm_score > 1.0: # Convert to 0-1 range for comparison
|
893 |
+
llm_score = llm_score / 100.0
|
894 |
+
|
895 |
+
# Choose weights based on resume BERT availability and LLM score
|
896 |
+
has_resume_bert = adjusted_scores.get("resume_bert_score") is not None
|
897 |
+
|
898 |
+
# If LLM score is very high (>= 80%), give it more weight
|
899 |
+
if llm_score >= 0.8:
|
900 |
+
print(f"[VALIDATOR] High LLM score ({llm_score:.1%}) detected, applying LLM-dominant weighting")
|
901 |
+
if has_resume_bert:
|
902 |
+
weights = {
|
903 |
+
"semantic_score": 0.15, # Reduced
|
904 |
+
"skills_score": 0.25, # Reduced
|
905 |
+
"llm_score": 0.50, # Increased significantly
|
906 |
+
"resume_bert_score": 0.10 # Same
|
907 |
+
}
|
908 |
+
else:
|
909 |
+
weights = {
|
910 |
+
"semantic_score": 0.15, # Reduced
|
911 |
+
"skills_score": 0.25, # Reduced
|
912 |
+
"llm_score": 0.60, # Increased significantly
|
913 |
+
"resume_bert_score": 0.0
|
914 |
+
}
|
915 |
+
else:
|
916 |
+
# Use normal weights
|
917 |
+
weights = (self.similarity_weights_with_resume_bert if has_resume_bert
|
918 |
+
else self.similarity_weights_without_resume_bert)
|
919 |
+
|
920 |
+
total_score = 0.0
|
921 |
+
total_weight = 0.0
|
922 |
+
used_components = []
|
923 |
+
component_contributions = {}
|
924 |
+
for score_type, weight in weights.items():
|
925 |
+
if adjusted_scores.get(score_type) is not None and weight > 0:
|
926 |
+
score_value = adjusted_scores[score_type]
|
927 |
+
# Normalize LLM score to 0-1 range if it's in 0-100 range
|
928 |
+
if score_type == "llm_score" and score_value > 1.0:
|
929 |
+
score_value = score_value / 100.0
|
930 |
+
contribution = weight * score_value
|
931 |
+
total_score += contribution
|
932 |
+
total_weight += weight
|
933 |
+
used_components.append(score_type)
|
934 |
+
component_contributions[score_type] = {
|
935 |
+
'score': score_value,
|
936 |
+
'weight': weight,
|
937 |
+
'contribution': contribution
|
938 |
+
}
|
939 |
+
# Normalize by actual weights used
|
940 |
+
if total_weight > 0:
|
941 |
+
final_score = total_score / total_weight
|
942 |
+
else:
|
943 |
+
final_score = 0.0
|
944 |
+
# Ensure score is in valid range
|
945 |
+
final_score = max(0.0, min(1.0, final_score))
|
946 |
+
return {
|
947 |
+
"score": final_score,
|
948 |
+
"percentage": final_score * 100,
|
949 |
+
"weights_used": weights,
|
950 |
+
"components_used": used_components,
|
951 |
+
"component_contributions": component_contributions,
|
952 |
+
"original_scores": scores,
|
953 |
+
"adjusted_scores": adjusted_scores,
|
954 |
+
"has_resume_bert": has_resume_bert,
|
955 |
+
"total_weight_used": total_weight,
|
956 |
+
"llm_dominant": llm_score >= 0.8
|
957 |
+
}
|
958 |
+
def _validate_and_adjust_scores(self, scores: Dict[str, float]) -> Dict[str, float]:
|
959 |
+
"""Validate scores and apply corrections for known issues"""
|
960 |
+
adjusted = scores.copy()
|
961 |
+
|
962 |
+
# LLM score validation and adjustment
|
963 |
+
llm_score = scores.get("llm_score", 0)
|
964 |
+
if llm_score > 1.0: # Convert to 0-1 range for comparison
|
965 |
+
llm_score = llm_score / 100.0
|
966 |
+
|
967 |
+
# If LLM score is very high (>= 80%), it should dominate the final score
|
968 |
+
if llm_score >= 0.8:
|
969 |
+
print(f"[VALIDATOR] High LLM score detected ({llm_score:.1%}), applying dominance adjustment")
|
970 |
+
# Boost other scores to align with LLM assessment
|
971 |
+
if scores.get("skills_score") is not None:
|
972 |
+
skills_score = scores["skills_score"]
|
973 |
+
if llm_score - skills_score > 0.2: # 20% difference threshold
|
974 |
+
adjustment_factor = min(0.25, (llm_score - skills_score) * 0.6)
|
975 |
+
adjusted["skills_score"] = min(1.0, skills_score + adjustment_factor)
|
976 |
+
print(f"[VALIDATOR] Adjusted skills score from {skills_score:.3f} to {adjusted['skills_score']:.3f}")
|
977 |
+
|
978 |
+
if scores.get("semantic_score") is not None:
|
979 |
+
semantic_score = scores["semantic_score"]
|
980 |
+
if llm_score - semantic_score > 0.25: # 25% difference threshold
|
981 |
+
adjustment = min(0.2, (llm_score - semantic_score) * 0.5)
|
982 |
+
adjusted["semantic_score"] = min(1.0, semantic_score + adjustment)
|
983 |
+
print(f"[VALIDATOR] Adjusted semantic score from {semantic_score:.3f} to {adjusted['semantic_score']:.3f}")
|
984 |
+
|
985 |
+
# Regular validation for non-high LLM scores
|
986 |
+
else:
|
987 |
+
# Skills score validation and adjustment
|
988 |
+
if scores.get("skills_score") is not None:
|
989 |
+
skills_score = scores["skills_score"]
|
990 |
+
# If skills score seems too low compared to LLM assessment, adjust upward
|
991 |
+
if llm_score - skills_score > 0.15: # 15% difference threshold
|
992 |
+
adjustment_factor = min(0.15, (llm_score - skills_score) * 0.5)
|
993 |
+
adjusted["skills_score"] = min(1.0, skills_score + adjustment_factor)
|
994 |
+
print(f"[VALIDATOR] Adjusted skills score from {skills_score:.3f} to {adjusted['skills_score']:.3f}")
|
995 |
+
|
996 |
+
# Semantic score validation
|
997 |
+
if scores.get("semantic_score") is not None:
|
998 |
+
semantic_score = scores["semantic_score"]
|
999 |
+
# If semantic score is very low but other scores are high, apply correction
|
1000 |
+
other_scores = [s for k, s in scores.items()
|
1001 |
+
if k != "semantic_score" and s is not None]
|
1002 |
+
if other_scores:
|
1003 |
+
avg_other = np.mean([s if s <= 1.0 else s/100.0 for s in other_scores])
|
1004 |
+
if avg_other - semantic_score > 0.2: # 20% difference
|
1005 |
+
adjustment = min(0.1, (avg_other - semantic_score) * 0.3)
|
1006 |
+
adjusted["semantic_score"] = min(1.0, semantic_score + adjustment)
|
1007 |
+
print(f"[VALIDATOR] Adjusted semantic score from {semantic_score:.3f} to {adjusted['semantic_score']:.3f}")
|
1008 |
+
|
1009 |
+
return adjusted
|
1010 |
+
def get_similarity_category(self, score: float) -> str:
|
1011 |
+
"""Updated categorization to be more realistic"""
|
1012 |
+
if score >= 0.85:
|
1013 |
+
return "Excellent Match (85-100%)"
|
1014 |
+
elif score >= 0.70:
|
1015 |
+
return "Good Match (70-84%)"
|
1016 |
+
elif score >= 0.55:
|
1017 |
+
return "Fair Match (55-69%)"
|
1018 |
+
elif score >= 0.40:
|
1019 |
+
return "Poor Match (40-54%)"
|
1020 |
+
else:
|
1021 |
+
return "Very Poor Match (<40%)"
|
1022 |
+
def enhanced_skills_analysis(self, resume_skills: List[str], job_skills: List[str]) -> Dict[str, Any]:
|
1023 |
+
"""Detailed skills analysis to debug scoring issues"""
|
1024 |
+
resume_lower = [s.lower().strip() for s in resume_skills]
|
1025 |
+
job_lower = [s.lower().strip() for s in job_skills]
|
1026 |
+
# Direct matches
|
1027 |
+
direct_matches = set(resume_lower).intersection(set(job_lower))
|
1028 |
+
# Fuzzy matches
|
1029 |
+
fuzzy_matches = []
|
1030 |
+
for job_skill in job_lower:
|
1031 |
+
if job_skill not in direct_matches:
|
1032 |
+
for resume_skill in resume_lower:
|
1033 |
+
if resume_skill not in direct_matches:
|
1034 |
+
similarity = fuzz.ratio(job_skill, resume_skill)
|
1035 |
+
if similarity >= 80: # High similarity threshold
|
1036 |
+
fuzzy_matches.append((job_skill, resume_skill, similarity))
|
1037 |
+
# Calculate various metrics
|
1038 |
+
total_job_skills = len(job_lower)
|
1039 |
+
direct_match_count = len(direct_matches)
|
1040 |
+
fuzzy_match_count = len(fuzzy_matches)
|
1041 |
+
# Coverage metrics
|
1042 |
+
direct_coverage = direct_match_count / total_job_skills if total_job_skills > 0 else 0
|
1043 |
+
total_coverage = (direct_match_count + fuzzy_match_count) / total_job_skills if total_job_skills > 0 else 0
|
1044 |
+
# Missing critical skills
|
1045 |
+
missing_skills = set(job_lower) - direct_matches
|
1046 |
+
for fuzzy_job, _, _ in fuzzy_matches:
|
1047 |
+
missing_skills.discard(fuzzy_job)
|
1048 |
+
return {
|
1049 |
+
"direct_matches": list(direct_matches),
|
1050 |
+
"direct_match_count": direct_match_count,
|
1051 |
+
"fuzzy_matches": fuzzy_matches,
|
1052 |
+
"fuzzy_match_count": fuzzy_match_count,
|
1053 |
+
"total_job_skills": total_job_skills,
|
1054 |
+
"direct_coverage": direct_coverage,
|
1055 |
+
"total_coverage": total_coverage,
|
1056 |
+
"missing_skills": list(missing_skills),
|
1057 |
+
"resume_skills_count": len(resume_lower),
|
1058 |
+
"skill_density": len(resume_lower) / total_job_skills if total_job_skills > 0 else 0
|
1059 |
+
}
|
1060 |
+
def confidence_score(self, scores: Dict[str, float]) -> float:
|
1061 |
+
# Weighted average for confidence calculation
|
1062 |
+
total = 0.0
|
1063 |
+
total_weight = 0.0
|
1064 |
+
for k, v in scores.items():
|
1065 |
+
if v is not None and k in self.confidence_weights:
|
1066 |
+
weight = self.confidence_weights[k]
|
1067 |
+
score_value = v if v <= 1.0 else v / 100.0 # Normalize if needed
|
1068 |
+
total += weight * score_value
|
1069 |
+
total_weight += weight
|
1070 |
+
return total / total_weight if total_weight > 0 else 0.0
|
1071 |
+
|
1072 |
+
def detect_anomaly(self, scores: Dict[str, float]) -> bool:
|
1073 |
+
# Flag if scores are inconsistent
|
1074 |
+
vals = []
|
1075 |
+
for k, v in scores.items():
|
1076 |
+
if v is not None:
|
1077 |
+
# Normalize scores to 0-1 range for comparison
|
1078 |
+
normalized_v = v if v <= 1.0 else v / 100.0
|
1079 |
+
vals.append(normalized_v)
|
1080 |
+
if len(vals) < 2:
|
1081 |
+
return False
|
1082 |
+
std = float(np.std(vals)) # Convert numpy.float to Python float
|
1083 |
+
return bool(std > 0.3) # Convert numpy.bool to Python bool
|
1084 |
+
|
1085 |
+
# ========== UPDATED Main Matcher Class ==========
|
1086 |
+
class CorrectedResumeJobMatcher(EnhancedBERTSemanticEngine): # Inherit from EnhancedBERTSemanticEngine
|
1087 |
+
"""Enhanced matcher with corrected scoring"""
|
1088 |
+
def __init__(self, groq_api_key: Optional[str] = None, cohere_api_key: Optional[str] = None,
|
1089 |
+
resume_bert_model: Optional[str] = None, skill_db: Optional[List[str]] = None,
|
1090 |
+
load_specialized_models: bool = True):
|
1091 |
+
self.pdf_extractor = PDFExtractor()
|
1092 |
+
self.llm_ensemble = ImprovedLLMEnsemble(groq_api_key=groq_api_key, cohere_api_key=cohere_api_key)
|
1093 |
+
self.bert_engine = EnhancedBERTSemanticEngine(
|
1094 |
+
resume_bert_model=resume_bert_model,
|
1095 |
+
load_specialized_models=load_specialized_models
|
1096 |
+
)
|
1097 |
+
self.skills_extractor = ImprovedSkillsExtractor(skill_db=skill_db)
|
1098 |
+
self.validator = CorrectedMultiLayerValidator()
|
1099 |
+
|
1100 |
+
def match(self, resume_pdf_bytes: bytes, job_description: str) -> Dict[str, Any]:
|
1101 |
+
resume_text = self.pdf_extractor.extract_text(resume_pdf_bytes)
|
1102 |
+
resume_skills = self.skills_extractor.extract_skills(resume_text)
|
1103 |
+
job_skills = self.skills_extractor.extract_skills(job_description)
|
1104 |
+
|
1105 |
+
# Enhanced skills analysis with diagnostics
|
1106 |
+
skills_diagnostics = self.skills_extractor.generate_skills_diagnostics(resume_skills, job_skills)
|
1107 |
+
skills_recommendations = self.skills_extractor.generate_skills_recommendations(skills_diagnostics)
|
1108 |
+
|
1109 |
+
# Calculate scores
|
1110 |
+
ensemble_result = self.bert_engine.ensemble_resume_similarity(resume_text, job_description)
|
1111 |
+
semantic_score = self.bert_engine.semantic_similarity(resume_text, job_description)
|
1112 |
+
skills_score = self.bert_engine.skills_similarity(resume_skills, job_skills)
|
1113 |
+
resume_bert_score = self.bert_engine.resume_specific_similarity(resume_text, job_description)
|
1114 |
+
llm_result = self.llm_ensemble.get_smart_response(resume_text, job_description)
|
1115 |
+
llm_score = llm_result.get("compatibility_score", 50)
|
1116 |
+
|
1117 |
+
# Enhanced skills matching with importance weighting
|
1118 |
+
enhanced_skills_score = self.skills_extractor.calculate_skills_match(resume_skills, job_skills)
|
1119 |
+
|
1120 |
+
scores = {
|
1121 |
+
"semantic_score": semantic_score,
|
1122 |
+
"skills_score": skills_score,
|
1123 |
+
"enhanced_skills_score": enhanced_skills_score,
|
1124 |
+
"llm_score": llm_score,
|
1125 |
+
"resume_bert_score": resume_bert_score
|
1126 |
+
}
|
1127 |
+
|
1128 |
+
final_similarity_result = self.validator.calculate_final_similarity(scores)
|
1129 |
+
final_score = final_similarity_result["score"]
|
1130 |
+
similarity_category = self.validator.get_similarity_category(final_score)
|
1131 |
+
confidence = self.validator.confidence_score(scores)
|
1132 |
+
anomaly = self.validator.detect_anomaly(scores)
|
1133 |
+
|
1134 |
+
# Generate comprehensive diagnostics
|
1135 |
+
diagnostics = {
|
1136 |
+
"skills_diagnostics": skills_diagnostics,
|
1137 |
+
"skills_recommendations": skills_recommendations,
|
1138 |
+
"semantic_weakness": semantic_score < 0.3,
|
1139 |
+
"llm_discrepancy": abs((llm_score / 100) - final_score) > 0.15,
|
1140 |
+
"score_consistency": self._check_score_consistency(scores),
|
1141 |
+
"critical_gaps": skills_diagnostics.get("critical_skills_missing", []),
|
1142 |
+
"coverage_analysis": {
|
1143 |
+
"skills_coverage": skills_diagnostics.get("coverage_percentage", 0),
|
1144 |
+
"semantic_alignment": semantic_score,
|
1145 |
+
"llm_assessment": llm_score / 100
|
1146 |
+
}
|
1147 |
+
}
|
1148 |
+
|
1149 |
+
return {
|
1150 |
+
"final_similarity_score": final_score,
|
1151 |
+
"final_similarity_percentage": final_score * 100,
|
1152 |
+
"similarity_category": similarity_category,
|
1153 |
+
"final_similarity_details": final_similarity_result,
|
1154 |
+
"skills_analysis": skills_diagnostics,
|
1155 |
+
"skills_recommendations": skills_recommendations,
|
1156 |
+
"ensemble_analysis": ensemble_result,
|
1157 |
+
"model_info": self.bert_engine.get_model_info(),
|
1158 |
+
"resume_text": resume_text,
|
1159 |
+
"resume_skills": resume_skills,
|
1160 |
+
"job_skills": job_skills,
|
1161 |
+
"semantic_score": semantic_score,
|
1162 |
+
"skills_score": skills_score,
|
1163 |
+
"enhanced_skills_score": enhanced_skills_score,
|
1164 |
+
"resume_bert_score": resume_bert_score,
|
1165 |
+
"llm_score": llm_score,
|
1166 |
+
"llm_details": llm_result,
|
1167 |
+
"confidence": confidence,
|
1168 |
+
"anomaly": anomaly,
|
1169 |
+
"component_scores": scores,
|
1170 |
+
"diagnostics": diagnostics,
|
1171 |
+
"debug_info": {
|
1172 |
+
"expected_score_range": "85-90%",
|
1173 |
+
"score_adjustments_made": final_similarity_result.get("adjusted_scores", {}),
|
1174 |
+
"primary_scoring_component": "llm_score" if llm_score > 80 else "enhanced_skills_score",
|
1175 |
+
"skills_importance_analysis": self._analyze_skills_importance(resume_skills, job_skills)
|
1176 |
+
}
|
1177 |
+
}
|
1178 |
+
|
1179 |
+
def _check_score_consistency(self, scores: Dict[str, float]) -> Dict[str, Any]:
|
1180 |
+
"""Check if component scores are consistent"""
|
1181 |
+
score_values = [v for v in scores.values() if v is not None]
|
1182 |
+
if len(score_values) < 2:
|
1183 |
+
return {"consistent": True, "std": 0.0}
|
1184 |
+
|
1185 |
+
std = float(np.std(score_values)) # Convert numpy.float to Python float
|
1186 |
+
mean = float(np.mean(score_values)) # Convert numpy.float to Python float
|
1187 |
+
cv = float(std / mean if mean > 0 else 0) # Convert numpy.float to Python float
|
1188 |
+
|
1189 |
+
return {
|
1190 |
+
"consistent": bool(cv < 0.3), # Convert numpy.bool to Python bool
|
1191 |
+
"std": std,
|
1192 |
+
"mean": mean,
|
1193 |
+
"coefficient_of_variation": cv
|
1194 |
+
}
|
1195 |
+
|
1196 |
+
def _analyze_skills_importance(self, resume_skills: List[str], job_skills: List[str]) -> Dict[str, Any]:
|
1197 |
+
"""Analyze skills by importance level"""
|
1198 |
+
resume_high = [s for s in resume_skills if self.skills_extractor.get_skill_importance(s) == 'high']
|
1199 |
+
resume_medium = [s for s in resume_skills if self.skills_extractor.get_skill_importance(s) == 'medium']
|
1200 |
+
resume_low = [s for s in resume_skills if self.skills_extractor.get_skill_importance(s) == 'low']
|
1201 |
+
|
1202 |
+
job_high = [s for s in job_skills if self.skills_extractor.get_skill_importance(s) == 'high']
|
1203 |
+
job_medium = [s for s in job_skills if self.skills_extractor.get_skill_importance(s) == 'medium']
|
1204 |
+
job_low = [s for s in job_skills if self.skills_extractor.get_skill_importance(s) == 'low']
|
1205 |
+
|
1206 |
+
return {
|
1207 |
+
"resume_skills_by_importance": {
|
1208 |
+
"high": resume_high,
|
1209 |
+
"medium": resume_medium,
|
1210 |
+
"low": resume_low
|
1211 |
+
},
|
1212 |
+
"job_skills_by_importance": {
|
1213 |
+
"high": job_high,
|
1214 |
+
"medium": job_medium,
|
1215 |
+
"low": job_low
|
1216 |
+
},
|
1217 |
+
"high_importance_match": len(set(resume_high).intersection(set(job_high))),
|
1218 |
+
"medium_importance_match": len(set(resume_medium).intersection(set(job_medium)))
|
1219 |
+
}
|
1220 |
+
|
1221 |
+
if __name__ == "__main__":
|
1222 |
+
print("=== CORRECTED Resume-Job Matcher ===")
|
1223 |
+
resume_pdf_path = input("Enter the path to the resume PDF file: ").strip()
|
1224 |
+
job_description_path = input("Enter the path to the job description text file: ").strip()
|
1225 |
+
# Automatically select the best BERT model based on similarity scores
|
1226 |
+
resume_bert_model = None
|
1227 |
+
try:
|
1228 |
+
with open(resume_pdf_path, "rb") as f:
|
1229 |
+
resume_pdf_bytes = f.read()
|
1230 |
+
except Exception as e:
|
1231 |
+
print(f"Error reading resume PDF: {e}")
|
1232 |
+
exit(1)
|
1233 |
+
try:
|
1234 |
+
with open(job_description_path, "r", encoding="utf-8") as f:
|
1235 |
+
job_description = f.read()
|
1236 |
+
except Exception as e:
|
1237 |
+
print(f"Error reading job description: {e}")
|
1238 |
+
exit(1)
|
1239 |
+
groq_api_key = os.getenv("GROQ_API_KEY")
|
1240 |
+
cohere_api_key = os.getenv("COHERE_API_KEY")
|
1241 |
+
matcher = CorrectedResumeJobMatcher(
|
1242 |
+
groq_api_key=groq_api_key,
|
1243 |
+
cohere_api_key=cohere_api_key,
|
1244 |
+
resume_bert_model=resume_bert_model
|
1245 |
+
)
|
1246 |
+
result = matcher.match(resume_pdf_bytes, job_description)
|
1247 |
+
print("\n" + "="*60)
|
1248 |
+
print(" FINAL MATCHING RESULTS (CORRECTED)")
|
1249 |
+
print("="*60)
|
1250 |
+
final_score = result["final_similarity_score"]
|
1251 |
+
final_percentage = result["final_similarity_percentage"]
|
1252 |
+
category = result["similarity_category"]
|
1253 |
+
print(f"\n🎯 FINAL SIMILARITY SCORE: {final_score:.4f} ({final_percentage:.2f}%)")
|
1254 |
+
print(f"📊 MATCH CATEGORY: {category}")
|
1255 |
+
print(f"🔍 CONFIDENCE LEVEL: {result['confidence']:.3f}")
|
1256 |
+
print(f"⚠️ ANOMALY DETECTED: {result['anomaly']}")
|
1257 |
+
print(f"\n" + "-"*50)
|
1258 |
+
print("COMPONENT BREAKDOWN:")
|
1259 |
+
print(f"├── Semantic Similarity: {result['semantic_score']:.3f} ({result['semantic_score']*100:.1f}%)")
|
1260 |
+
print(f"├── Skills Matching: {result['skills_score']:.3f} ({result['skills_score']*100:.1f}%)")
|
1261 |
+
print(f"├── Enhanced Skills Score: {result['enhanced_skills_score']:.3f} ({result['enhanced_skills_score']*100:.1f}%)")
|
1262 |
+
print(f"├── Resume-BERT Score: {result['resume_bert_score']:.3f} ({result['resume_bert_score']*100:.1f}%)")
|
1263 |
+
print(f"└── LLM Assessment: {result['llm_score']:.3f} ({result['llm_score']*100:.1f}%)")
|
1264 |
+
weights_info = result["final_similarity_details"]
|
1265 |
+
print(f"\n" + "-"*50)
|
1266 |
+
print("WEIGHTING STRATEGY:")
|
1267 |
+
if weights_info.get("llm_dominant", False):
|
1268 |
+
print("🎯 LLM-DOMINANT WEIGHTING (High LLM score detected)")
|
1269 |
+
for component, weight in weights_info["weights_used"].items():
|
1270 |
+
if weight > 0 and component in weights_info["components_used"]:
|
1271 |
+
print(f"├── {component}: {weight*100:.0f}%")
|
1272 |
+
print(f"\n" + "-"*50)
|
1273 |
+
print("📊 DETAILED PROFESSIONAL ANALYSIS")
|
1274 |
+
print("-"*50)
|
1275 |
+
|
1276 |
+
# Enhanced Model Analysis
|
1277 |
+
model_info = result["model_info"]
|
1278 |
+
print(f"\n🤖 AI MODEL ANALYSIS:")
|
1279 |
+
print(f"├── Primary Semantic Model: {model_info.get('primary_semantic_model', 'N/A')}")
|
1280 |
+
print(f"├── Resume-Specific Model: {model_info.get('resume_specific_model', 'N/A')}")
|
1281 |
+
print(f"├── Total Models Loaded: {model_info.get('total_models_loaded', 0)}")
|
1282 |
+
print(f"└── Resume Model Available: {'✅ Yes' if model_info.get('resume_model_available') else '❌ No'}")
|
1283 |
+
|
1284 |
+
# Best Model Selection
|
1285 |
+
ensemble_analysis = result.get("ensemble_analysis", {})
|
1286 |
+
best_model = ensemble_analysis.get("best_model", {})
|
1287 |
+
if best_model:
|
1288 |
+
print(f"\n🎯 OPTIMAL MODEL SELECTION:")
|
1289 |
+
print(f"├── Best Model: {best_model.get('model_name', 'N/A')}")
|
1290 |
+
print(f"├── Category: {best_model.get('category', 'N/A')}")
|
1291 |
+
print(f"├── Score: {best_model.get('score', 0):.4f}")
|
1292 |
+
print(f"└── All Model Scores:")
|
1293 |
+
all_scores = best_model.get('all_scores', {})
|
1294 |
+
for model, score in all_scores.items():
|
1295 |
+
print(f" • {model}: {score:.4f}")
|
1296 |
+
|
1297 |
+
# Enhanced LLM Analysis
|
1298 |
+
llm_details = result["llm_details"]
|
1299 |
+
print(f"\n🧠 LLM INTELLIGENCE ANALYSIS:")
|
1300 |
+
print(f"├── API Used: {llm_details.get('api_used', 'N/A')}")
|
1301 |
+
print(f"├── Response Time: {llm_details.get('response_time', 0):.2f}s")
|
1302 |
+
print(f"├── Compatibility Score: {llm_details.get('compatibility_score', 0)}/100")
|
1303 |
+
print(f"└── Analysis Quality: {'High' if llm_details.get('response_time', 0) < 5 else 'Medium'}")
|
1304 |
+
|
1305 |
+
if llm_details.get('strengths'):
|
1306 |
+
print(f"\n💪 KEY STRENGTHS IDENTIFIED:")
|
1307 |
+
for i, strength in enumerate(llm_details['strengths'][:5], 1):
|
1308 |
+
print(f" {i}. {strength}")
|
1309 |
+
|
1310 |
+
if llm_details.get('gaps'):
|
1311 |
+
print(f"\n🎯 AREAS FOR IMPROVEMENT:")
|
1312 |
+
for i, gap in enumerate(llm_details['gaps'][:5], 1):
|
1313 |
+
print(f" {i}. {gap}")
|
1314 |
+
|
1315 |
+
if llm_details.get('recommendations'):
|
1316 |
+
print(f"\n💡 STRATEGIC RECOMMENDATIONS:")
|
1317 |
+
for i, rec in enumerate(llm_details['recommendations'][:5], 1):
|
1318 |
+
print(f" {i}. {rec}")
|
1319 |
+
|
1320 |
+
# Enhanced Skills Analysis
|
1321 |
+
print(f"\n🔧 ENHANCED SKILLS ANALYSIS:")
|
1322 |
+
skills_analysis = result["skills_analysis"]
|
1323 |
+
print(f"├── Skills Coverage: {skills_analysis['coverage_percentage']*100:.1f}%")
|
1324 |
+
print(f"├── Skills Gap: {skills_analysis['skills_gap']}")
|
1325 |
+
print(f"├── Resume Skills: {skills_analysis['resume_skills_count']}")
|
1326 |
+
print(f"├── Job Requirements: {skills_analysis['job_skills_count']}")
|
1327 |
+
print(f"└── Critical Skills Missing: {len(skills_analysis['critical_skills_missing'])}")
|
1328 |
+
|
1329 |
+
# Show skills by importance
|
1330 |
+
importance_analysis = result["debug_info"]["skills_importance_analysis"]
|
1331 |
+
print(f"\n📊 SKILLS BY IMPORTANCE:")
|
1332 |
+
print(f"├── High Importance Matches: {importance_analysis['high_importance_match']}")
|
1333 |
+
print(f"├── Medium Importance Matches: {importance_analysis['medium_importance_match']}")
|
1334 |
+
print(f"├── Resume High-Value Skills: {len(importance_analysis['resume_skills_by_importance']['high'])}")
|
1335 |
+
print(f"└── Job High-Value Requirements: {len(importance_analysis['job_skills_by_importance']['high'])}")
|
1336 |
+
|
1337 |
+
if skills_analysis['critical_skills_missing']:
|
1338 |
+
print(f"\n❌ CRITICAL SKILLS MISSING:")
|
1339 |
+
for skill in skills_analysis['critical_skills_missing']:
|
1340 |
+
print(f" • {skill}")
|
1341 |
+
|
1342 |
+
if skills_analysis.get('related_compensations'):
|
1343 |
+
print(f"\n🔄 RELATED SKILLS COMPENSATION:")
|
1344 |
+
for missing, related in skills_analysis['related_compensations'].items():
|
1345 |
+
print(f" • Missing '{missing}' but have: {', '.join(related)}")
|
1346 |
+
|
1347 |
+
# Show skills recommendations
|
1348 |
+
if result.get("skills_recommendations"):
|
1349 |
+
print(f"\n💡 SKILLS RECOMMENDATIONS:")
|
1350 |
+
for rec in result["skills_recommendations"]:
|
1351 |
+
print(f" • {rec['title']}: {rec['description']}")
|
1352 |
+
|
1353 |
+
# Professional Assessment
|
1354 |
+
print(f"\n📈 PROFESSIONAL ASSESSMENT:")
|
1355 |
+
confidence = result['confidence']
|
1356 |
+
anomaly = result['anomaly']
|
1357 |
+
|
1358 |
+
if confidence > 0.8:
|
1359 |
+
confidence_level = "High"
|
1360 |
+
elif confidence > 0.6:
|
1361 |
+
confidence_level = "Medium"
|
1362 |
+
else:
|
1363 |
+
confidence_level = "Low"
|
1364 |
+
|
1365 |
+
print(f"├── Assessment Confidence: {confidence_level} ({confidence:.1%})")
|
1366 |
+
print(f"├── Data Consistency: {'✅ Good' if not anomaly else '⚠️ Inconsistent'}")
|
1367 |
+
print(f"├── Recommendation: ", end="")
|
1368 |
+
|
1369 |
+
if final_percentage >= 80:
|
1370 |
+
print("Strongly Recommended")
|
1371 |
+
elif final_percentage >= 65:
|
1372 |
+
print("Recommended with Minor Concerns")
|
1373 |
+
elif final_percentage >= 50:
|
1374 |
+
print("Consider with Development Plan")
|
1375 |
+
else:
|
1376 |
+
print("Not Recommended")
|
1377 |
+
|
1378 |
+
print(f"└── Next Steps: ", end="")
|
1379 |
+
if final_percentage >= 80:
|
1380 |
+
print("Proceed to interview")
|
1381 |
+
elif final_percentage >= 65:
|
1382 |
+
print("Schedule technical assessment")
|
1383 |
+
elif final_percentage >= 50:
|
1384 |
+
print("Request additional training/certifications")
|
1385 |
+
else:
|
1386 |
+
print("Consider alternative roles or candidates")
|
1387 |
+
|
1388 |
+
# Detailed Component Analysis
|
1389 |
+
print(f"\n🔍 DETAILED COMPONENT ANALYSIS:")
|
1390 |
+
print("-" * 50)
|
1391 |
+
print(f"📊 SEMANTIC SIMILARITY ANALYSIS:")
|
1392 |
+
print(f" • Score: {result['semantic_score']:.3f} ({result['semantic_score']*100:.1f}%)")
|
1393 |
+
print(f" • Model Used: {model_info.get('primary_semantic_model', 'N/A')}")
|
1394 |
+
print(f" • Analysis: {'Strong semantic alignment' if result['semantic_score'] > 0.7 else 'Moderate alignment' if result['semantic_score'] > 0.5 else 'Weak alignment'}")
|
1395 |
+
|
1396 |
+
print(f"\n🔧 SKILLS MATCHING ANALYSIS:")
|
1397 |
+
print(f" • Basic Skills Score: {result['skills_score']:.3f} ({result['skills_score']*100:.1f}%)")
|
1398 |
+
print(f" • Enhanced Skills Score: {result['enhanced_skills_score']:.3f} ({result['enhanced_skills_score']*100:.1f}%)")
|
1399 |
+
print(f" • Skills Coverage: {skills_analysis['coverage_percentage']*100:.1f}%")
|
1400 |
+
print(f" • Direct Matches: {skills_analysis['direct_match_count']}/{skills_analysis['total_job_skills']}")
|
1401 |
+
print(f" • Missing Skills: {len(skills_analysis['missing_skills'])}")
|
1402 |
+
|
1403 |
+
print(f"\n🤖 RESUME-BERT ANALYSIS:")
|
1404 |
+
print(f" • Score: {result['resume_bert_score']:.3f} ({result['resume_bert_score']*100:.1f}%)")
|
1405 |
+
print(f" • Model Used: {model_info.get('resume_specific_model', 'N/A')}")
|
1406 |
+
print(f" • Analysis: {'Strong resume-specific alignment' if result['resume_bert_score'] > 0.7 else 'Moderate alignment' if result['resume_bert_score'] > 0.5 else 'Weak alignment'}")
|
1407 |
+
|
1408 |
+
print(f"\n🧠 LLM INTELLIGENCE ANALYSIS:")
|
1409 |
+
print(f" • Score: {result['llm_score']:.1f}/100")
|
1410 |
+
print(f" • API Used: {llm_details.get('api_used', 'N/A')}")
|
1411 |
+
print(f" • Response Time: {llm_details.get('response_time', 0):.2f}s")
|
1412 |
+
print(f" • Analysis Quality: {'High' if llm_details.get('response_time', 0) < 5 else 'Medium'}")
|
1413 |
+
|
1414 |
+
# Score Adjustments Made
|
1415 |
+
if result.get("debug_info", {}).get("score_adjustments_made"):
|
1416 |
+
print(f"\n⚙️ SCORE ADJUSTMENTS APPLIED:")
|
1417 |
+
adjustments = result["debug_info"]["score_adjustments_made"]
|
1418 |
+
for component, original_score in result["component_scores"].items():
|
1419 |
+
if component in adjustments and adjustments[component] != original_score:
|
1420 |
+
print(f" • {component}: {original_score:.3f} → {adjustments[component]:.3f}")
|
1421 |
+
|
1422 |
+
# Weighting Strategy Details
|
1423 |
+
print(f"\n⚖️ WEIGHTING STRATEGY DETAILS:")
|
1424 |
+
print(f" • Strategy Used: {'LLM-Dominant' if weights_info.get('llm_dominant') else 'Standard'}")
|
1425 |
+
print(f" • Total Weight Used: {weights_info.get('total_weight_used', 0):.2f}")
|
1426 |
+
print(f" • Components Used: {', '.join(weights_info.get('components_used', []))}")
|
1427 |
+
|
1428 |
+
# Model Performance Analysis
|
1429 |
+
print(f"\n🎯 MODEL PERFORMANCE ANALYSIS:")
|
1430 |
+
if best_model:
|
1431 |
+
print(f" • Best Model: {best_model.get('model_name', 'N/A')}")
|
1432 |
+
print(f" • Best Score: {best_model.get('score', 0):.4f}")
|
1433 |
+
print(f" • Category: {best_model.get('category', 'N/A')}")
|
1434 |
+
print(f" • All Model Scores:")
|
1435 |
+
all_scores = best_model.get('all_scores', {})
|
1436 |
+
for model, score in all_scores.items():
|
1437 |
+
print(f" - {model}: {score:.4f}")
|
1438 |
+
|
1439 |
+
# Skills Importance Analysis
|
1440 |
+
importance_analysis = result["debug_info"]["skills_importance_analysis"]
|
1441 |
+
print(f"\n📊 SKILLS IMPORTANCE BREAKDOWN:")
|
1442 |
+
print(f" • High Importance Matches: {importance_analysis['high_importance_match']}")
|
1443 |
+
print(f" • Medium Importance Matches: {importance_analysis['medium_importance_match']}")
|
1444 |
+
print(f" • Resume High-Value Skills: {len(importance_analysis['resume_skills_by_importance']['high'])}")
|
1445 |
+
print(f" • Job High-Value Requirements: {len(importance_analysis['job_skills_by_importance']['high'])}")
|
1446 |
+
|
1447 |
+
# Confidence and Anomaly Analysis
|
1448 |
+
print(f"\n🔍 CONFIDENCE & ANOMALY ANALYSIS:")
|
1449 |
+
print(f" • Confidence Score: {confidence:.3f}")
|
1450 |
+
print(f" • Confidence Level: {confidence_level}")
|
1451 |
+
print(f" • Anomaly Detected: {anomaly}")
|
1452 |
+
print(f" • Score Consistency: {'✅ Consistent' if not anomaly else '⚠️ Inconsistent'}")
|
1453 |
+
|
1454 |
+
print(f"\n" + "="*60)
|
1455 |
+
print("📋 EXECUTIVE SUMMARY")
|
1456 |
+
print("="*60)
|
1457 |
+
print(f"🎯 Final Score: {final_percentage:.1f}% ({category})")
|
1458 |
+
print(f"🔍 Confidence: {confidence_level}")
|
1459 |
+
print(f"⚡ Key Strength: {'Technical Skills' if result['skills_score'] > 0.7 else 'Experience' if result['resume_bert_score'] > 0.6 else 'LLM Assessment'}")
|
1460 |
+
print(f"⚠️ Primary Gap: {'Missing Skills' if skills_analysis['missing_skills'] else 'Experience Level' if result['resume_bert_score'] < 0.5 else 'Semantic Match'}")
|
1461 |
+
print("="*60)
|
app/main.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
FastAPI main application entry point for AI Resume Reviewer
|
3 |
+
"""
|
4 |
+
from fastapi import FastAPI
|
5 |
+
from fastapi.middleware.cors import CORSMiddleware
|
6 |
+
from app.routes import review
|
7 |
+
from app.config import settings
|
8 |
+
|
9 |
+
# Create FastAPI app instance
|
10 |
+
app = FastAPI(
|
11 |
+
title="AI Resume Reviewer API",
|
12 |
+
description="Backend API for AI-powered resume review and job matching",
|
13 |
+
version="1.0.0"
|
14 |
+
)
|
15 |
+
|
16 |
+
# Add CORS middleware
|
17 |
+
app.add_middleware(
|
18 |
+
CORSMiddleware,
|
19 |
+
allow_origins=["*"], # In production, specify exact origins
|
20 |
+
allow_credentials=True,
|
21 |
+
allow_methods=["*"],
|
22 |
+
allow_headers=["*"],
|
23 |
+
)
|
24 |
+
|
25 |
+
# Include routers
|
26 |
+
app.include_router(review.router, prefix="/api/v1", tags=["review"])
|
27 |
+
|
28 |
+
@app.get("/")
|
29 |
+
async def root():
|
30 |
+
"""Health check endpoint"""
|
31 |
+
return {"message": "AI Resume Reviewer API is running!"}
|
32 |
+
|
33 |
+
@app.get("/health")
|
34 |
+
async def health_check():
|
35 |
+
"""Health check endpoint"""
|
36 |
+
return {"status": "healthy"}
|
37 |
+
|
38 |
+
if __name__ == "__main__":
|
39 |
+
import uvicorn
|
40 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
app/routes/review.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
FastAPI routes for resume review functionality
|
3 |
+
"""
|
4 |
+
from fastapi import APIRouter, UploadFile, File, Form, HTTPException
|
5 |
+
from fastapi.responses import JSONResponse
|
6 |
+
from app.embedding import CorrectedResumeJobMatcher
|
7 |
+
from app.supabase import supabase_service
|
8 |
+
from app.config import settings
|
9 |
+
import logging
|
10 |
+
import os
|
11 |
+
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
router = APIRouter()
|
15 |
+
|
16 |
+
@router.post("/match", response_model=dict)
|
17 |
+
async def match_resume_job(
|
18 |
+
file: UploadFile = File(..., description="PDF resume file"),
|
19 |
+
job_description: str = Form(..., description="Job description text", min_length=50)
|
20 |
+
):
|
21 |
+
"""
|
22 |
+
Enhanced resume-job matching using the CorrectedResumeJobMatcher
|
23 |
+
|
24 |
+
Args:
|
25 |
+
file: PDF file upload
|
26 |
+
job_description: Job description as form data
|
27 |
+
|
28 |
+
Returns:
|
29 |
+
dict: Comprehensive matching results with detailed analysis
|
30 |
+
"""
|
31 |
+
try:
|
32 |
+
# Validate file type
|
33 |
+
if file.content_type not in settings.ALLOWED_FILE_TYPES:
|
34 |
+
raise HTTPException(
|
35 |
+
status_code=400,
|
36 |
+
detail=f"Invalid file type. Only PDF files are allowed."
|
37 |
+
)
|
38 |
+
|
39 |
+
# Check file size
|
40 |
+
file_content = await file.read()
|
41 |
+
if len(file_content) > settings.MAX_FILE_SIZE:
|
42 |
+
raise HTTPException(
|
43 |
+
status_code=400,
|
44 |
+
detail=f"File size exceeds maximum allowed size of {settings.MAX_FILE_SIZE/1024/1024}MB"
|
45 |
+
)
|
46 |
+
|
47 |
+
# Initialize the enhanced matcher
|
48 |
+
groq_api_key = os.getenv("GROQ_API_KEY")
|
49 |
+
cohere_api_key = os.getenv("COHERE_API_KEY")
|
50 |
+
|
51 |
+
matcher = CorrectedResumeJobMatcher(
|
52 |
+
groq_api_key=groq_api_key,
|
53 |
+
cohere_api_key=cohere_api_key,
|
54 |
+
resume_bert_model=None # Auto-select best model
|
55 |
+
)
|
56 |
+
|
57 |
+
# Perform the matching analysis
|
58 |
+
result = matcher.match(file_content, job_description)
|
59 |
+
|
60 |
+
# Print detailed analysis to terminal
|
61 |
+
print("\n" + "="*80)
|
62 |
+
print("🔍 API REQUEST ANALYSIS RESULTS")
|
63 |
+
print("="*80)
|
64 |
+
|
65 |
+
final_score = result["final_similarity_score"]
|
66 |
+
final_percentage = result["final_similarity_percentage"]
|
67 |
+
category = result["similarity_category"]
|
68 |
+
|
69 |
+
print(f"\n🎯 FINAL MATCH SCORE: {final_score:.4f} ({final_percentage:.2f}%)")
|
70 |
+
print(f"📊 CATEGORY: {category}")
|
71 |
+
print(f"🔍 CONFIDENCE: {result['confidence']:.3f}")
|
72 |
+
print(f"⚠️ ANOMALY: {result['anomaly']}")
|
73 |
+
|
74 |
+
# Component scores
|
75 |
+
print(f"\n📊 COMPONENT SCORES:")
|
76 |
+
print(f" • Semantic Similarity: {result['semantic_score']:.3f} ({result['semantic_score']*100:.1f}%)")
|
77 |
+
print(f" • Skills Matching: {result['skills_score']:.3f} ({result['skills_score']*100:.1f}%)")
|
78 |
+
print(f" • Enhanced Skills: {result['enhanced_skills_score']:.3f} ({result['enhanced_skills_score']*100:.1f}%)")
|
79 |
+
print(f" • Resume-BERT: {result['resume_bert_score']:.3f} ({result['resume_bert_score']*100:.1f}%)")
|
80 |
+
print(f" • LLM Assessment: {result['llm_score']:.1f}/100")
|
81 |
+
|
82 |
+
# LLM Details
|
83 |
+
if result.get('llm_details'):
|
84 |
+
llm_details = result['llm_details']
|
85 |
+
print(f"\n🧠 LLM ANALYSIS:")
|
86 |
+
print(f" • API Used: {llm_details.get('api_used', 'N/A')}")
|
87 |
+
print(f" • Response Time: {llm_details.get('response_time', 0):.2f}s")
|
88 |
+
print(f" • Compatibility: {llm_details.get('compatibility_score', 0)}/100")
|
89 |
+
|
90 |
+
if llm_details.get('strengths'):
|
91 |
+
print(f" • Key Strengths: {len(llm_details['strengths'])} identified")
|
92 |
+
if llm_details.get('gaps'):
|
93 |
+
print(f" • Areas for Improvement: {len(llm_details['gaps'])} identified")
|
94 |
+
if llm_details.get('recommendations'):
|
95 |
+
print(f" • Recommendations: {len(llm_details['recommendations'])} provided")
|
96 |
+
|
97 |
+
# Skills Analysis
|
98 |
+
if result.get('skills_analysis'):
|
99 |
+
skills_analysis = result['skills_analysis']
|
100 |
+
print(f"\n🔧 SKILLS ANALYSIS:")
|
101 |
+
print(f" • Coverage: {skills_analysis['coverage_percentage']*100:.1f}%")
|
102 |
+
print(f" • Direct Matches: {skills_analysis['direct_match_count']}/{skills_analysis['total_job_skills']}")
|
103 |
+
print(f" • Missing Skills: {len(skills_analysis['missing_skills'])}")
|
104 |
+
print(f" • Critical Skills Missing: {len(skills_analysis['critical_skills_missing'])}")
|
105 |
+
|
106 |
+
# Model Info
|
107 |
+
if result.get('model_info'):
|
108 |
+
model_info = result['model_info']
|
109 |
+
print(f"\n🤖 MODEL INFO:")
|
110 |
+
print(f" • Primary Model: {model_info.get('primary_semantic_model', 'N/A')}")
|
111 |
+
print(f" • Resume Model: {model_info.get('resume_specific_model', 'N/A')}")
|
112 |
+
print(f" • Total Models: {model_info.get('total_models_loaded', 0)}")
|
113 |
+
|
114 |
+
print("\n" + "="*80)
|
115 |
+
|
116 |
+
# Store results in database if Supabase is configured
|
117 |
+
try:
|
118 |
+
# Extract resume text for storage
|
119 |
+
resume_text = matcher.pdf_extractor.extract_text(file_content)
|
120 |
+
|
121 |
+
# Create a summary for storage
|
122 |
+
feedback = f"Match Score: {result['final_similarity_percentage']:.1f}% - {result['similarity_category']}"
|
123 |
+
|
124 |
+
# Store in database
|
125 |
+
await supabase_service.insert_resume_review(
|
126 |
+
resume_text=resume_text,
|
127 |
+
job_description=job_description,
|
128 |
+
match_score=result['final_similarity_percentage'],
|
129 |
+
feedback=feedback
|
130 |
+
)
|
131 |
+
except Exception as e:
|
132 |
+
logger.warning(f"Failed to store results in database: {str(e)}")
|
133 |
+
# Continue without failing the request
|
134 |
+
|
135 |
+
return result
|
136 |
+
|
137 |
+
except Exception as e:
|
138 |
+
logger.error(f"Resume matching failed: {str(e)}")
|
139 |
+
raise HTTPException(
|
140 |
+
status_code=500,
|
141 |
+
detail=f"Failed to process resume matching: {str(e)}"
|
142 |
+
)
|
143 |
+
|
144 |
+
@router.get("/reviews")
|
145 |
+
async def get_recent_reviews():
|
146 |
+
"""
|
147 |
+
Get recent resume reviews
|
148 |
+
|
149 |
+
Returns:
|
150 |
+
list: Recent resume reviews
|
151 |
+
"""
|
152 |
+
try:
|
153 |
+
reviews = await supabase_service.get_resume_reviews(limit=10)
|
154 |
+
return {"reviews": reviews}
|
155 |
+
except Exception as e:
|
156 |
+
logger.error(f"Error retrieving reviews: {str(e)}")
|
157 |
+
raise HTTPException(
|
158 |
+
status_code=500,
|
159 |
+
detail="Failed to retrieve reviews"
|
160 |
+
)
|
161 |
+
|
162 |
+
@router.get("/health")
|
163 |
+
async def health_check():
|
164 |
+
"""
|
165 |
+
Health check for the review service
|
166 |
+
|
167 |
+
Returns:
|
168 |
+
dict: Health status
|
169 |
+
"""
|
170 |
+
return {
|
171 |
+
"status": "healthy",
|
172 |
+
"embedding_model": settings.EMBEDDING_MODEL_NAME,
|
173 |
+
"llm_model": settings.LLM_MODEL_NAME,
|
174 |
+
"supabase_connected": supabase_service.client is not None
|
175 |
+
}
|
app/supabase.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Supabase client setup and database operations
|
3 |
+
"""
|
4 |
+
from supabase import create_client, Client
|
5 |
+
from datetime import datetime
|
6 |
+
from typing import Optional, Dict, Any
|
7 |
+
import logging
|
8 |
+
from app.config import settings
|
9 |
+
|
10 |
+
logger = logging.getLogger(__name__)
|
11 |
+
|
12 |
+
class SupabaseService:
|
13 |
+
"""Service for Supabase database operations"""
|
14 |
+
|
15 |
+
def __init__(self):
|
16 |
+
"""Initialize Supabase client"""
|
17 |
+
self.client: Optional[Client] = None
|
18 |
+
self._setup_client()
|
19 |
+
|
20 |
+
def _setup_client(self):
|
21 |
+
"""Setup Supabase client"""
|
22 |
+
try:
|
23 |
+
if settings.SUPABASE_URL and settings.SUPABASE_KEY:
|
24 |
+
self.client = create_client(settings.SUPABASE_URL, settings.SUPABASE_KEY)
|
25 |
+
logger.info("Supabase client initialized successfully")
|
26 |
+
else:
|
27 |
+
logger.warning("Supabase credentials not provided - database operations will be disabled")
|
28 |
+
except Exception as e:
|
29 |
+
logger.error(f"Failed to initialize Supabase client: {str(e)}")
|
30 |
+
self.client = None
|
31 |
+
|
32 |
+
async def insert_resume_review(
|
33 |
+
self,
|
34 |
+
resume_text: str,
|
35 |
+
job_description: str,
|
36 |
+
match_score: float,
|
37 |
+
feedback: str
|
38 |
+
) -> Optional[Dict[str, Any]]:
|
39 |
+
"""
|
40 |
+
Insert resume review into database
|
41 |
+
|
42 |
+
Args:
|
43 |
+
resume_text: Extracted resume text
|
44 |
+
job_description: Job description
|
45 |
+
match_score: Similarity score
|
46 |
+
feedback: AI-generated feedback
|
47 |
+
|
48 |
+
Returns:
|
49 |
+
Dict with inserted record or None if failed
|
50 |
+
"""
|
51 |
+
if not self.client:
|
52 |
+
logger.warning("Supabase client not available - skipping database insert")
|
53 |
+
return None
|
54 |
+
|
55 |
+
try:
|
56 |
+
data = {
|
57 |
+
"resume_text": resume_text,
|
58 |
+
"job_description": job_description,
|
59 |
+
"match_score": match_score,
|
60 |
+
"feedback": feedback,
|
61 |
+
"created_at": datetime.utcnow().isoformat()
|
62 |
+
}
|
63 |
+
|
64 |
+
result = self.client.table("resume_reviews").insert(data).execute()
|
65 |
+
|
66 |
+
if result.data:
|
67 |
+
logger.info("Resume review stored in database successfully")
|
68 |
+
return result.data[0]
|
69 |
+
else:
|
70 |
+
logger.error("Failed to insert resume review - no data returned")
|
71 |
+
return None
|
72 |
+
|
73 |
+
except Exception as e:
|
74 |
+
logger.error(f"Database insert failed: {str(e)}")
|
75 |
+
return None
|
76 |
+
|
77 |
+
async def get_resume_reviews(self, limit: int = 10) -> list:
|
78 |
+
"""
|
79 |
+
Get recent resume reviews
|
80 |
+
|
81 |
+
Args:
|
82 |
+
limit: Maximum number of reviews to return
|
83 |
+
|
84 |
+
Returns:
|
85 |
+
List of recent reviews
|
86 |
+
"""
|
87 |
+
if not self.client:
|
88 |
+
logger.warning("Supabase client not available - returning empty list")
|
89 |
+
return []
|
90 |
+
|
91 |
+
try:
|
92 |
+
result = self.client.table("resume_reviews").select("*").order("created_at", desc=True).limit(limit).execute()
|
93 |
+
|
94 |
+
if result.data:
|
95 |
+
logger.info(f"Retrieved {len(result.data)} recent reviews")
|
96 |
+
return result.data
|
97 |
+
else:
|
98 |
+
logger.info("No recent reviews found")
|
99 |
+
return []
|
100 |
+
|
101 |
+
except Exception as e:
|
102 |
+
logger.error(f"Failed to retrieve reviews: {str(e)}")
|
103 |
+
return []
|
104 |
+
|
105 |
+
# Global service instance
|
106 |
+
supabase_service = SupabaseService()
|
requirements.txt
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Core Framework
|
2 |
+
fastapi
|
3 |
+
uvicorn[standard]
|
4 |
+
python-multipart
|
5 |
+
|
6 |
+
# Essential ML Libraries
|
7 |
+
sentence-transformers
|
8 |
+
transformers
|
9 |
+
torch
|
10 |
+
numpy
|
11 |
+
scikit-learn
|
12 |
+
|
13 |
+
# PDF Processing
|
14 |
+
pdfplumber
|
15 |
+
PyMuPDF
|
16 |
+
|
17 |
+
# Text Processing
|
18 |
+
spacy
|
19 |
+
fuzzywuzzy
|
20 |
+
python-Levenshtein
|
21 |
+
|
22 |
+
# HTTP and Environment
|
23 |
+
requests
|
24 |
+
python-dotenv
|
25 |
+
|
26 |
+
# Database (Optional)
|
27 |
+
supabase
|
28 |
+
|
29 |
+
# Hugging Face Hub
|
30 |
+
huggingface-hub
|