Spaces:
Running
on
Zero
Running
on
Zero
This PR adds 2 examples (#1)
Browse files- This PR adds 2 examples (2aef4be0e35784cdc1d2d4580a29c4dc19d7c8f7)
Co-authored-by: Fabrice TIERCELIN <[email protected]>
- .gitattributes +1 -0
- Example1.webp +0 -0
- Example2.png +3 -0
- app.py +96 -94
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
Example2.png filter=lfs diff=lfs merge=lfs -text
|
Example1.webp
ADDED
|
Example2.png
ADDED
|
Git LFS Details
|
app.py
CHANGED
|
@@ -1,95 +1,97 @@
|
|
| 1 |
-
from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
|
| 2 |
-
from PIL import Image
|
| 3 |
-
import requests
|
| 4 |
-
import torch
|
| 5 |
-
from threading import Thread
|
| 6 |
-
import gradio as gr
|
| 7 |
-
from gradio import FileData
|
| 8 |
-
import time
|
| 9 |
-
import spaces
|
| 10 |
-
import re
|
| 11 |
-
ckpt = "Xkev/Llama-3.2V-11B-cot"
|
| 12 |
-
model = MllamaForConditionalGeneration.from_pretrained(ckpt,
|
| 13 |
-
torch_dtype=torch.bfloat16).to("cuda")
|
| 14 |
-
processor = AutoProcessor.from_pretrained(ckpt)
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
@spaces.GPU
|
| 18 |
-
def bot_streaming(message, history, max_new_tokens=250):
|
| 19 |
-
|
| 20 |
-
txt = message["text"]
|
| 21 |
-
ext_buffer = f"{txt}"
|
| 22 |
-
|
| 23 |
-
messages= []
|
| 24 |
-
images = []
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
for i, msg in enumerate(history):
|
| 28 |
-
if isinstance(msg[0], tuple):
|
| 29 |
-
messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
|
| 30 |
-
messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
|
| 31 |
-
images.append(Image.open(msg[0][0]).convert("RGB"))
|
| 32 |
-
elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
|
| 33 |
-
# messages are already handled
|
| 34 |
-
pass
|
| 35 |
-
elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): # text only turn
|
| 36 |
-
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
|
| 37 |
-
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
|
| 38 |
-
|
| 39 |
-
# add current message
|
| 40 |
-
if len(message["files"]) == 1:
|
| 41 |
-
|
| 42 |
-
if isinstance(message["files"][0], str): # examples
|
| 43 |
-
image = Image.open(message["files"][0]).convert("RGB")
|
| 44 |
-
else: # regular input
|
| 45 |
-
image = Image.open(message["files"][0]["path"]).convert("RGB")
|
| 46 |
-
images.append(image)
|
| 47 |
-
messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
|
| 48 |
-
else:
|
| 49 |
-
messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
texts = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 53 |
-
|
| 54 |
-
if images == []:
|
| 55 |
-
inputs = processor(text=texts, return_tensors="pt").to("cuda")
|
| 56 |
-
else:
|
| 57 |
-
inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
|
| 58 |
-
|
| 59 |
-
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
|
| 60 |
-
|
| 61 |
-
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
|
| 62 |
-
generated_text = ""
|
| 63 |
-
|
| 64 |
-
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 65 |
-
thread.start()
|
| 66 |
-
buffer = ""
|
| 67 |
-
|
| 68 |
-
for new_text in streamer:
|
| 69 |
-
buffer += new_text
|
| 70 |
-
generated_text_without_prompt = buffer
|
| 71 |
-
time.sleep(0.01)
|
| 72 |
-
|
| 73 |
-
buffer = re.sub(r"<(\w+)>", r"(Here begins the \1 stage)", buffer)
|
| 74 |
-
buffer = re.sub(r"</(\w+)>", r"(Here ends the \1 stage)", buffer)
|
| 75 |
-
|
| 76 |
-
yield buffer
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
demo = gr.ChatInterface(fn=bot_streaming, title="LLaVA-CoT",
|
| 80 |
-
textbox=gr.MultimodalTextbox(),
|
| 81 |
-
additional_inputs = [gr.Slider(
|
| 82 |
-
minimum=512,
|
| 83 |
-
maximum=1024,
|
| 84 |
-
value=512,
|
| 85 |
-
step=1,
|
| 86 |
-
label="Maximum number of new tokens to generate",
|
| 87 |
-
)
|
| 88 |
-
],
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
| 95 |
demo.launch(debug=True)
|
|
|
|
| 1 |
+
from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import requests
|
| 4 |
+
import torch
|
| 5 |
+
from threading import Thread
|
| 6 |
+
import gradio as gr
|
| 7 |
+
from gradio import FileData
|
| 8 |
+
import time
|
| 9 |
+
import spaces
|
| 10 |
+
import re
|
| 11 |
+
ckpt = "Xkev/Llama-3.2V-11B-cot"
|
| 12 |
+
model = MllamaForConditionalGeneration.from_pretrained(ckpt,
|
| 13 |
+
torch_dtype=torch.bfloat16).to("cuda")
|
| 14 |
+
processor = AutoProcessor.from_pretrained(ckpt)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
@spaces.GPU
|
| 18 |
+
def bot_streaming(message, history, max_new_tokens=250):
|
| 19 |
+
|
| 20 |
+
txt = message["text"]
|
| 21 |
+
ext_buffer = f"{txt}"
|
| 22 |
+
|
| 23 |
+
messages= []
|
| 24 |
+
images = []
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
for i, msg in enumerate(history):
|
| 28 |
+
if isinstance(msg[0], tuple):
|
| 29 |
+
messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
|
| 30 |
+
messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
|
| 31 |
+
images.append(Image.open(msg[0][0]).convert("RGB"))
|
| 32 |
+
elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
|
| 33 |
+
# messages are already handled
|
| 34 |
+
pass
|
| 35 |
+
elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): # text only turn
|
| 36 |
+
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
|
| 37 |
+
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
|
| 38 |
+
|
| 39 |
+
# add current message
|
| 40 |
+
if len(message["files"]) == 1:
|
| 41 |
+
|
| 42 |
+
if isinstance(message["files"][0], str): # examples
|
| 43 |
+
image = Image.open(message["files"][0]).convert("RGB")
|
| 44 |
+
else: # regular input
|
| 45 |
+
image = Image.open(message["files"][0]["path"]).convert("RGB")
|
| 46 |
+
images.append(image)
|
| 47 |
+
messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
|
| 48 |
+
else:
|
| 49 |
+
messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
texts = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 53 |
+
|
| 54 |
+
if images == []:
|
| 55 |
+
inputs = processor(text=texts, return_tensors="pt").to("cuda")
|
| 56 |
+
else:
|
| 57 |
+
inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
|
| 58 |
+
|
| 59 |
+
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
|
| 60 |
+
|
| 61 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
|
| 62 |
+
generated_text = ""
|
| 63 |
+
|
| 64 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 65 |
+
thread.start()
|
| 66 |
+
buffer = ""
|
| 67 |
+
|
| 68 |
+
for new_text in streamer:
|
| 69 |
+
buffer += new_text
|
| 70 |
+
generated_text_without_prompt = buffer
|
| 71 |
+
time.sleep(0.01)
|
| 72 |
+
|
| 73 |
+
buffer = re.sub(r"<(\w+)>", r"(Here begins the \1 stage)", buffer)
|
| 74 |
+
buffer = re.sub(r"</(\w+)>", r"(Here ends the \1 stage)", buffer)
|
| 75 |
+
|
| 76 |
+
yield buffer
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
demo = gr.ChatInterface(fn=bot_streaming, title="LLaVA-CoT",
|
| 80 |
+
textbox=gr.MultimodalTextbox(),
|
| 81 |
+
additional_inputs = [gr.Slider(
|
| 82 |
+
minimum=512,
|
| 83 |
+
maximum=1024,
|
| 84 |
+
value=512,
|
| 85 |
+
step=1,
|
| 86 |
+
label="Maximum number of new tokens to generate",
|
| 87 |
+
)
|
| 88 |
+
],
|
| 89 |
+
examples=[{"text": "What is on the flower?", "files": ["./Example1.webp"]},
|
| 90 |
+
{"text": "How to make this pastry?", "files": ["./Example2.png"]}],
|
| 91 |
+
cache_examples=False,
|
| 92 |
+
description="Upload an image, and start chatting about it. To learn more about LLaVA-CoT, visit [our GitHub page](https://github.com/PKU-YuanGroup/LLaVA-CoT). Note: Since Gradio currently does not support displaying the special markings in the output, we have replaced it with the expression (Here begins the X phase).",
|
| 93 |
+
stop_btn="Stop Generation",
|
| 94 |
+
fill_height=True,
|
| 95 |
+
multimodal=True)
|
| 96 |
+
|
| 97 |
demo.launch(debug=True)
|