xicocdi commited on
Commit
acff654
·
1 Parent(s): a49221e

use openai_embedding

Browse files
Files changed (1) hide show
  1. app.py +8 -3
app.py CHANGED
@@ -11,7 +11,7 @@ from langchain.prompts import PromptTemplate
11
  from langchain.chains import ConversationalRetrievalChain
12
  from langchain_community.vectorstores import Qdrant
13
  from langchain.memory import ConversationBufferMemory
14
- from langchain_huggingface import HuggingFaceEmbeddings
15
 
16
  import chainlit as cl
17
 
@@ -34,7 +34,7 @@ text_splitter = RecursiveCharacterTextSplitter(
34
 
35
  docs = text_splitter.split_documents(documents)
36
 
37
- embedding = HuggingFaceEmbeddings(model_name="XicoC/midterm-finetuned-arctic")
38
 
39
  vectorstore = Qdrant.from_documents(
40
  documents=docs,
@@ -79,6 +79,11 @@ llm = ChatOpenAI(
79
  streaming=True,
80
  )
81
 
 
 
 
 
 
82
 
83
  @cl.on_chat_start
84
  async def start_chat():
@@ -88,7 +93,7 @@ async def start_chat():
88
 
89
  qa = ConversationalRetrievalChain.from_llm(
90
  llm,
91
- retriever=retriever,
92
  memory=memory,
93
  combine_docs_chain_kwargs={"prompt": PROMPT},
94
  return_source_documents=True,
 
11
  from langchain.chains import ConversationalRetrievalChain
12
  from langchain_community.vectorstores import Qdrant
13
  from langchain.memory import ConversationBufferMemory
14
+ from langchain.retrievers.multi_query import MultiQueryRetriever
15
 
16
  import chainlit as cl
17
 
 
34
 
35
  docs = text_splitter.split_documents(documents)
36
 
37
+ embedding = OpenAIEmbeddings(model="text-embedding-3-small")
38
 
39
  vectorstore = Qdrant.from_documents(
40
  documents=docs,
 
79
  streaming=True,
80
  )
81
 
82
+ retriever_llm = ChatOpenAI(model="gpt-4o-mini", temperature=0)
83
+ multiquery_retriever = MultiQueryRetriever.from_llm(
84
+ retriever=retriever, llm=retriever_llm
85
+ )
86
+
87
 
88
  @cl.on_chat_start
89
  async def start_chat():
 
93
 
94
  qa = ConversationalRetrievalChain.from_llm(
95
  llm,
96
+ retriever=multiquery_retriever,
97
  memory=memory,
98
  combine_docs_chain_kwargs={"prompt": PROMPT},
99
  return_source_documents=True,