Spaces:
Sleeping
Sleeping
xicocdi
commited on
Commit
·
2182f80
1
Parent(s):
a942057
final push
Browse files- Embedding_Model_Eval.ipynb +206 -0
- app.py +1 -5
Embedding_Model_Eval.ipynb
CHANGED
|
@@ -576,6 +576,212 @@
|
|
| 576 |
"multiquery_ft_embedding_metrics_df.to_csv(\"multiquery_ft_embedding_metrics.csv\", index=False)"
|
| 577 |
]
|
| 578 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 579 |
{
|
| 580 |
"cell_type": "code",
|
| 581 |
"execution_count": 41,
|
|
|
|
| 576 |
"multiquery_ft_embedding_metrics_df.to_csv(\"multiquery_ft_embedding_metrics.csv\", index=False)"
|
| 577 |
]
|
| 578 |
},
|
| 579 |
+
{
|
| 580 |
+
"cell_type": "code",
|
| 581 |
+
"execution_count": 1,
|
| 582 |
+
"metadata": {},
|
| 583 |
+
"outputs": [],
|
| 584 |
+
"source": [
|
| 585 |
+
"import pandas as pd"
|
| 586 |
+
]
|
| 587 |
+
},
|
| 588 |
+
{
|
| 589 |
+
"cell_type": "code",
|
| 590 |
+
"execution_count": 2,
|
| 591 |
+
"metadata": {},
|
| 592 |
+
"outputs": [],
|
| 593 |
+
"source": [
|
| 594 |
+
"multiquery_metrics_df = pd.read_csv(\"multiquery_metrics.csv\")"
|
| 595 |
+
]
|
| 596 |
+
},
|
| 597 |
+
{
|
| 598 |
+
"cell_type": "code",
|
| 599 |
+
"execution_count": 3,
|
| 600 |
+
"metadata": {},
|
| 601 |
+
"outputs": [],
|
| 602 |
+
"source": [
|
| 603 |
+
"multiquery_ft_embedding_metrics_df = pd.read_csv(\"multiquery_ft_embedding_metrics.csv\")"
|
| 604 |
+
]
|
| 605 |
+
},
|
| 606 |
+
{
|
| 607 |
+
"cell_type": "code",
|
| 608 |
+
"execution_count": 5,
|
| 609 |
+
"metadata": {},
|
| 610 |
+
"outputs": [
|
| 611 |
+
{
|
| 612 |
+
"data": {
|
| 613 |
+
"text/html": [
|
| 614 |
+
"<div>\n",
|
| 615 |
+
"<style scoped>\n",
|
| 616 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 617 |
+
" vertical-align: middle;\n",
|
| 618 |
+
" }\n",
|
| 619 |
+
"\n",
|
| 620 |
+
" .dataframe tbody tr th {\n",
|
| 621 |
+
" vertical-align: top;\n",
|
| 622 |
+
" }\n",
|
| 623 |
+
"\n",
|
| 624 |
+
" .dataframe thead th {\n",
|
| 625 |
+
" text-align: right;\n",
|
| 626 |
+
" }\n",
|
| 627 |
+
"</style>\n",
|
| 628 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 629 |
+
" <thead>\n",
|
| 630 |
+
" <tr style=\"text-align: right;\">\n",
|
| 631 |
+
" <th></th>\n",
|
| 632 |
+
" <th>Metric</th>\n",
|
| 633 |
+
" <th>MultiQuery</th>\n",
|
| 634 |
+
" </tr>\n",
|
| 635 |
+
" </thead>\n",
|
| 636 |
+
" <tbody>\n",
|
| 637 |
+
" <tr>\n",
|
| 638 |
+
" <th>0</th>\n",
|
| 639 |
+
" <td>faithfulness</td>\n",
|
| 640 |
+
" <td>0.896804</td>\n",
|
| 641 |
+
" </tr>\n",
|
| 642 |
+
" <tr>\n",
|
| 643 |
+
" <th>1</th>\n",
|
| 644 |
+
" <td>answer_relevancy</td>\n",
|
| 645 |
+
" <td>0.953211</td>\n",
|
| 646 |
+
" </tr>\n",
|
| 647 |
+
" <tr>\n",
|
| 648 |
+
" <th>2</th>\n",
|
| 649 |
+
" <td>context_recall</td>\n",
|
| 650 |
+
" <td>0.890625</td>\n",
|
| 651 |
+
" </tr>\n",
|
| 652 |
+
" <tr>\n",
|
| 653 |
+
" <th>3</th>\n",
|
| 654 |
+
" <td>context_precision</td>\n",
|
| 655 |
+
" <td>0.920732</td>\n",
|
| 656 |
+
" </tr>\n",
|
| 657 |
+
" <tr>\n",
|
| 658 |
+
" <th>4</th>\n",
|
| 659 |
+
" <td>answer_correctness</td>\n",
|
| 660 |
+
" <td>0.690058</td>\n",
|
| 661 |
+
" </tr>\n",
|
| 662 |
+
" </tbody>\n",
|
| 663 |
+
"</table>\n",
|
| 664 |
+
"</div>"
|
| 665 |
+
],
|
| 666 |
+
"text/plain": [
|
| 667 |
+
" Metric MultiQuery\n",
|
| 668 |
+
"0 faithfulness 0.896804\n",
|
| 669 |
+
"1 answer_relevancy 0.953211\n",
|
| 670 |
+
"2 context_recall 0.890625\n",
|
| 671 |
+
"3 context_precision 0.920732\n",
|
| 672 |
+
"4 answer_correctness 0.690058"
|
| 673 |
+
]
|
| 674 |
+
},
|
| 675 |
+
"execution_count": 5,
|
| 676 |
+
"metadata": {},
|
| 677 |
+
"output_type": "execute_result"
|
| 678 |
+
}
|
| 679 |
+
],
|
| 680 |
+
"source": [
|
| 681 |
+
"multiquery_metrics_df"
|
| 682 |
+
]
|
| 683 |
+
},
|
| 684 |
+
{
|
| 685 |
+
"cell_type": "code",
|
| 686 |
+
"execution_count": 6,
|
| 687 |
+
"metadata": {},
|
| 688 |
+
"outputs": [
|
| 689 |
+
{
|
| 690 |
+
"data": {
|
| 691 |
+
"text/html": [
|
| 692 |
+
"<div>\n",
|
| 693 |
+
"<style scoped>\n",
|
| 694 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 695 |
+
" vertical-align: middle;\n",
|
| 696 |
+
" }\n",
|
| 697 |
+
"\n",
|
| 698 |
+
" .dataframe tbody tr th {\n",
|
| 699 |
+
" vertical-align: top;\n",
|
| 700 |
+
" }\n",
|
| 701 |
+
"\n",
|
| 702 |
+
" .dataframe thead th {\n",
|
| 703 |
+
" text-align: right;\n",
|
| 704 |
+
" }\n",
|
| 705 |
+
"</style>\n",
|
| 706 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 707 |
+
" <thead>\n",
|
| 708 |
+
" <tr style=\"text-align: right;\">\n",
|
| 709 |
+
" <th></th>\n",
|
| 710 |
+
" <th>Metric</th>\n",
|
| 711 |
+
" <th>MultiQuery</th>\n",
|
| 712 |
+
" <th>Fine-Tune Embedding</th>\n",
|
| 713 |
+
" <th>Baseline -> Fine-Tune Embedding</th>\n",
|
| 714 |
+
" </tr>\n",
|
| 715 |
+
" </thead>\n",
|
| 716 |
+
" <tbody>\n",
|
| 717 |
+
" <tr>\n",
|
| 718 |
+
" <th>0</th>\n",
|
| 719 |
+
" <td>faithfulness</td>\n",
|
| 720 |
+
" <td>0.896804</td>\n",
|
| 721 |
+
" <td>0.868351</td>\n",
|
| 722 |
+
" <td>-0.028452</td>\n",
|
| 723 |
+
" </tr>\n",
|
| 724 |
+
" <tr>\n",
|
| 725 |
+
" <th>1</th>\n",
|
| 726 |
+
" <td>answer_relevancy</td>\n",
|
| 727 |
+
" <td>0.953211</td>\n",
|
| 728 |
+
" <td>0.955777</td>\n",
|
| 729 |
+
" <td>0.002566</td>\n",
|
| 730 |
+
" </tr>\n",
|
| 731 |
+
" <tr>\n",
|
| 732 |
+
" <th>2</th>\n",
|
| 733 |
+
" <td>context_recall</td>\n",
|
| 734 |
+
" <td>0.890625</td>\n",
|
| 735 |
+
" <td>0.944444</td>\n",
|
| 736 |
+
" <td>0.053819</td>\n",
|
| 737 |
+
" </tr>\n",
|
| 738 |
+
" <tr>\n",
|
| 739 |
+
" <th>3</th>\n",
|
| 740 |
+
" <td>context_precision</td>\n",
|
| 741 |
+
" <td>0.920732</td>\n",
|
| 742 |
+
" <td>0.953668</td>\n",
|
| 743 |
+
" <td>0.032936</td>\n",
|
| 744 |
+
" </tr>\n",
|
| 745 |
+
" <tr>\n",
|
| 746 |
+
" <th>4</th>\n",
|
| 747 |
+
" <td>answer_correctness</td>\n",
|
| 748 |
+
" <td>0.690058</td>\n",
|
| 749 |
+
" <td>0.603407</td>\n",
|
| 750 |
+
" <td>-0.086651</td>\n",
|
| 751 |
+
" </tr>\n",
|
| 752 |
+
" </tbody>\n",
|
| 753 |
+
"</table>\n",
|
| 754 |
+
"</div>"
|
| 755 |
+
],
|
| 756 |
+
"text/plain": [
|
| 757 |
+
" Metric MultiQuery Fine-Tune Embedding \\\n",
|
| 758 |
+
"0 faithfulness 0.896804 0.868351 \n",
|
| 759 |
+
"1 answer_relevancy 0.953211 0.955777 \n",
|
| 760 |
+
"2 context_recall 0.890625 0.944444 \n",
|
| 761 |
+
"3 context_precision 0.920732 0.953668 \n",
|
| 762 |
+
"4 answer_correctness 0.690058 0.603407 \n",
|
| 763 |
+
"\n",
|
| 764 |
+
" Baseline -> Fine-Tune Embedding \n",
|
| 765 |
+
"0 -0.028452 \n",
|
| 766 |
+
"1 0.002566 \n",
|
| 767 |
+
"2 0.053819 \n",
|
| 768 |
+
"3 0.032936 \n",
|
| 769 |
+
"4 -0.086651 "
|
| 770 |
+
]
|
| 771 |
+
},
|
| 772 |
+
"execution_count": 6,
|
| 773 |
+
"metadata": {},
|
| 774 |
+
"output_type": "execute_result"
|
| 775 |
+
}
|
| 776 |
+
],
|
| 777 |
+
"source": [
|
| 778 |
+
"df_baseline_ft_embeddings = pd.merge(multiquery_metrics_df, multiquery_ft_embedding_metrics_df, on='Metric')\n",
|
| 779 |
+
"\n",
|
| 780 |
+
"df_baseline_ft_embeddings['Baseline -> Fine-Tune Embedding'] = df_baseline_ft_embeddings['Fine-Tune Embedding'] - df_baseline_ft_embeddings['MultiQuery']\n",
|
| 781 |
+
"\n",
|
| 782 |
+
"df_baseline_ft_embeddings"
|
| 783 |
+
]
|
| 784 |
+
},
|
| 785 |
{
|
| 786 |
"cell_type": "code",
|
| 787 |
"execution_count": 41,
|
app.py
CHANGED
|
@@ -76,13 +76,9 @@ retriever = vectorstore.as_retriever(
|
|
| 76 |
llm = ChatOpenAI(
|
| 77 |
model="gpt-4o-mini",
|
| 78 |
temperature=0,
|
| 79 |
-
streaming=True,
|
| 80 |
)
|
| 81 |
|
| 82 |
-
|
| 83 |
-
multiquery_retriever = MultiQueryRetriever.from_llm(
|
| 84 |
-
retriever=retriever, llm=retriever_llm
|
| 85 |
-
)
|
| 86 |
|
| 87 |
|
| 88 |
@cl.on_chat_start
|
|
|
|
| 76 |
llm = ChatOpenAI(
|
| 77 |
model="gpt-4o-mini",
|
| 78 |
temperature=0,
|
|
|
|
| 79 |
)
|
| 80 |
|
| 81 |
+
multiquery_retriever = MultiQueryRetriever.from_llm(retriever=retriever, llm=llm)
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
|
| 84 |
@cl.on_chat_start
|