Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,20 @@
|
|
1 |
-
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
|
|
|
|
|
4 |
model_name = "Xennus/niko-mistral-cyberbot"
|
5 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
6 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
outputs = model.generate(**inputs, max_length=200)
|
11 |
-
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
12 |
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from pydantic import BaseModel
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
|
5 |
+
app = FastAPI()
|
6 |
+
|
7 |
model_name = "Xennus/niko-mistral-cyberbot"
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
10 |
+
model.eval()
|
11 |
|
12 |
+
class Request(BaseModel):
|
13 |
+
prompt: str
|
|
|
|
|
14 |
|
15 |
+
@app.post("/generate")
|
16 |
+
async def generate(request: Request):
|
17 |
+
inputs = tokenizer(request.prompt, return_tensors="pt")
|
18 |
+
outputs = model.generate(**inputs, max_length=200)
|
19 |
+
text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
20 |
+
return {"response": text}
|