Spaces:
Sleeping
Sleeping
from transformers import AutoTokenizer | |
import gradio as gr | |
import os | |
# Retrieve the Hugging Face token from secrets | |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN") | |
def tokenize(input_text): | |
palmyra_x_003_tokens = len(palmyra_x_003_tokenizer(input_text, add_special_tokens=True)["input_ids"]) | |
gpt2_tokens = len(gpt2_tokenizer(input_text, add_special_tokens=True)["input_ids"]) | |
palmyra_x_004_tokens = len(palmyra_x_004_tokenizer(input_text, add_special_tokens=True)["input_ids"]) | |
results = { | |
"Palmyra-X-004": palmyra_x_004_tokens, | |
"Palmyra-Fin & Med": palmyra_x_003_tokens, | |
"Palmyra-X-003": gpt2_tokens | |
} | |
# Sort the results in descending order based on token length | |
sorted_results = sorted(results.items(), key=lambda x: x[1], reverse=True) | |
return "\n".join([f"{model}: {tokens}" for model, tokens in sorted_results]) | |
if __name__ == "__main__": | |
palmyra_x_003_tokenizer = AutoTokenizer.from_pretrained("wassemgtk/palmyra-x-003-tokenizer", token=huggingface_token) | |
gpt2_tokenizer = AutoTokenizer.from_pretrained("gpt2") | |
palmyra_x_004_tokenizer = AutoTokenizer.from_pretrained("wassemgtk/palmyra-x-004-tokenizer", token=huggingface_token) | |
iface = gr.Interface(fn=tokenize, inputs=gr.Textbox(label="Input Text", lines=19), outputs="text") | |
iface.launch() |