cyberandy's picture
Update app.py
21ea453 verified
import gradio as gr
import os
import asyncio
import nest_asyncio
from datetime import datetime
from typing import Optional, Dict, Any
from autogen_agentchat.agents import AssistantAgent, UserProxyAgent
from autogen_agentchat.conditions import MaxMessageTermination, TextMentionTermination
from autogen_agentchat.teams import SelectorGroupChat
from autogen_ext.models.openai import OpenAIChatCompletionClient
from autogen_ext.agents.web_surfer import MultimodalWebSurfer
# Enable nested event loops
nest_asyncio.apply()
class AIShoppingAnalyzer:
def __init__(self, api_key: str):
self.api_key = api_key
os.environ["OPENAI_API_KEY"] = api_key
self.model_client = OpenAIChatCompletionClient(model="gpt-4o")
self.termination = MaxMessageTermination(max_messages=20) | TextMentionTermination("TERMINATE")
def create_websurfer(self) -> MultimodalWebSurfer:
"""Initialize the web surfer agent for e-commerce research"""
description = (
"E-commerce research specialist that:\n"
"1. Searches multiple retailers for product options\n"
"2. Compares prices and reviews\n"
"3. Checks product specifications and availability\n"
"4. Analyzes website structure and findability\n"
"5. Detects and analyzes structured data (Schema.org, JSON-LD, Microdata)\n"
"6. Evaluates product markup and rich snippets\n"
"7. Checks for proper semantic HTML and data organization"
)
return MultimodalWebSurfer(
name="websurfer_agent",
model_client=self.model_client,
description=description,
headless=True,
to_save_screenshots=True, # Save screenshots for analysis
use_ocr=True, # Enable OCR for better text extraction
to_resize_viewport=True, # Ensure proper viewport sizing
debug_dir="debug_logs" # Save debug information
)
def create_assistant(self) -> AssistantAgent:
"""Initialize the shopping assistant agent"""
system_message = (
"You are an expert shopping assistant and e-commerce analyst. "
"Analyze websites and provide reports in this format:\n\n"
"πŸ“Š E-COMMERCE ANALYSIS REPORT\n"
"============================\n"
"Site: {url}\n"
"Date: {date}\n\n"
"πŸ” FINDABILITY SCORE: [β˜…β˜…β˜…β˜…β˜†]\n"
"-----------------------------\n"
"β€’ Category Organization\n"
"β€’ Navigation Structure\n"
"β€’ Filter Systems\n\n"
"πŸ“ INFORMATION QUALITY: [β˜…β˜…β˜…β˜…β˜†]\n"
"------------------------------\n"
"β€’ Product Details\n"
"β€’ Image Quality\n"
"β€’ Technical Specs\n"
"β€’ Structured Data\n\n"
"πŸ”„ NAVIGATION & SEARCH: [β˜…β˜…β˜…β˜…β˜†]\n"
"------------------------------\n"
"β€’ Search Features\n"
"β€’ User Experience\n"
"β€’ Mobile Design\n\n"
"πŸ’° PRICING TRANSPARENCY: [β˜…β˜…β˜…β˜…β˜†]\n"
"------------------------------\n"
"β€’ Price Display\n"
"β€’ Special Offers\n"
"β€’ Comparison Tools\n\n"
"πŸ“ˆ OVERALL ASSESSMENT\n"
"-------------------\n"
"[Summary]\n\n"
"πŸ”§ TECHNICAL INSIGHTS\n"
"-------------------\n"
"[Technical Details]"
)
return AssistantAgent(
name="assistant_agent",
description="E-commerce shopping advisor and website analyzer",
system_message=system_message,
model_client=self.model_client
)
def create_team(self, websurfer_agent: MultimodalWebSurfer, assistant_agent: AssistantAgent) -> SelectorGroupChat:
"""Set up the team of agents"""
user_proxy = UserProxyAgent(
name="user_proxy",
description="A user looking for product recommendations"
)
return SelectorGroupChat(
participants=[websurfer_agent, assistant_agent, user_proxy],
selector_prompt="""You are coordinating a shopping assistance system. The following roles are available:
{roles}
Given the conversation history {history}, select the next role from {participants}.
- The websurfer_agent searches products and analyzes website structure
- The assistant_agent analyzes findings and makes recommendations
- The user_proxy provides input when needed
Return only the role name.""",
model_client=self.model_client,
termination_condition=self.termination
)
async def analyze_site(self,
website_url: str,
product_category: str,
specific_product: Optional[str] = None) -> str:
"""Run the analysis with proper cleanup"""
websurfer = None
try:
# Set up the analysis query
query = (
f"Analyze the e-commerce experience for {website_url} focusing on:\n"
f"1. Product findability in the {product_category} category\n"
"2. Product information quality\n"
"3. Navigation and search functionality\n"
"4. Price visibility and comparison features"
)
if specific_product:
query += f"\n5. Detailed analysis of this specific product: {specific_product}"
# Initialize agents with proper configuration
websurfer = self.create_websurfer()
assistant = self.create_assistant()
team = self.create_team(websurfer, assistant)
try:
result = []
async for message in team.run_stream(task=query):
if isinstance(message, str):
result.append(message)
else:
result.append(str(message))
return "\n".join(result)
except EOFError:
return "Analysis completed with some limitations. Please try again if results are incomplete."
except Exception as e:
return f"Analysis error: {str(e)}"
finally:
if websurfer:
try:
# Properly close the browser
await websurfer.close()
print("Browser closed successfully")
except Exception as e:
print(f"Error closing browser: {str(e)}")
def create_gradio_interface() -> gr.Blocks:
"""Create the Gradio interface for the AI Shopping Analyzer"""
css = """
@import url('https://fonts.googleapis.com/css2?family=Open+Sans:wght@300;400;600;700&display=swap');
body {
font-family: 'Open Sans', sans-serif !important;
}
.dashboard-container {
border: 1px solid #e0e5ff;
border-radius: 8px;
background-color: #ffffff;
}
.token-header {
font-size: 1.25rem;
font-weight: 600;
margin-top: 1rem;
margin-bottom: 0.5rem;
}
.feature-button {
display: inline-block;
margin: 0.25rem;
padding: 0.5rem 1rem;
background-color: #f3f4f6;
border: 1px solid #e5e7eb;
border-radius: 0.375rem;
font-size: 0.875rem;
}
.feature-button:hover {
background-color: #e5e7eb;
}
.gr-form {
background: transparent !important;
border: none !important;
box-shadow: none !important;
}
.gr-input, .gr-textarea {
border: 1px solid #e5e7eb !important;
border-radius: 6px !important;
padding: 8px 12px !important;
font-size: 14px !important;
transition: all 0.2s !important;
}
.gr-input:focus, .gr-textarea:focus {
border-color: #3452DB !important;
outline: none !important;
box-shadow: 0 0 0 2px rgba(52, 82, 219, 0.2) !important;
}
.gr-button {
background-color: #3452DB !important;
color: white !important;
border-radius: 6px !important;
padding: 8px 16px !important;
font-size: 14px !important;
font-weight: 600 !important;
transition: all 0.2s !important;
}
.gr-button:hover {
background-color: #2a41af !important;
}
.analysis-output {
background: white;
padding: 20px;
border-radius: 8px;
border: 1px solid #e0e5ff;
margin-top: 20px;
font-family: 'Open Sans', sans-serif;
}
.analysis-output h1 {
font-size: 1.5em;
font-weight: bold;
margin-bottom: 1em;
color: #1a1a1a;
}
.analysis-output h2 {
font-size: 1.25em;
font-weight: 600;
margin-top: 1.5em;
margin-bottom: 0.5em;
color: #2a2a2a;
border-bottom: 2px solid #e0e5ff;
padding-bottom: 0.5em;
}
.analysis-output h3 {
font-size: 1.1em;
font-weight: 600;
margin-top: 1em;
margin-bottom: 0.5em;
color: #3a3a3a;
}
.analysis-output ul {
margin-left: 1.5em;
margin-bottom: 1em;
list-style-type: none;
}
.analysis-output li {
margin-bottom: 0.8em;
position: relative;
line-height: 1.6;
}
.analysis-output li:before {
content: "β€’";
position: absolute;
left: -1.2em;
color: #3452DB;
}
.analysis-output p {
margin-bottom: 1em;
line-height: 1.6;
color: #4a4a4a;
}
.analysis-output code {
background: #f3f4f6;
padding: 0.2em 0.4em;
border-radius: 4px;
font-size: 0.9em;
color: #3452DB;
}
/* Star rating styles */
.star-rating {
color: #3452DB;
letter-spacing: 2px;
}
/* Section dividers */
.section-divider {
border-top: 1px solid #e0e5ff;
margin: 2em 0;
}
/* Score indicators */
.score-indicator {
background: #f8f9ff;
padding: 0.5em 1em;
border-radius: 4px;
border-left: 4px solid #3452DB;
margin: 1em 0;
}
/* Special formatting for emojis */
.emoji-icon {
font-size: 1.2em;
margin-right: 0.5em;
vertical-align: middle;
}
"""
def format_markdown_report(report_text: str) -> str:
"""Format the report text with proper Markdown and styling"""
# Extract just the report content using markers
try:
start_marker = "πŸ“Š E-COMMERCE ANALYSIS REPORT"
end_marker = "TECHNICAL INSIGHTS"
# Find the report content
start_idx = report_text.find(start_marker)
if start_idx == -1:
return "Error: Could not find report content"
# Extract and clean the report
report_lines = []
in_report = False
for line in report_text.split('\n'):
if start_marker in line:
in_report = True
report_lines.append("# " + line.strip())
continue
if in_report:
# Skip empty lines
if not line.strip():
continue
# Format section headers
if any(emoji in line for emoji in ['πŸ”', 'πŸ“', 'πŸ”„', 'πŸ’°', 'πŸ“ˆ', 'πŸ”§']):
if ":" in line:
title, score = line.split(":", 1)
report_lines.append(f"\n## {title.strip()}")
if score.strip():
report_lines.append(f"**Score: {score.strip()}**\n")
else:
report_lines.append(f"\n## {line.strip()}\n")
continue
# Format bullet points
if line.strip().startswith('β€’'):
report_lines.append(line.replace('β€’', '-'))
continue
# Add other lines as is
report_lines.append(line.strip())
# Join the lines and clean up the formatting
report_text = '\n'.join(report_lines)
# Clean up multiple blank lines
report_text = '\n'.join(line for line, _ in itertools.groupby(report_text.split('\n')))
# Ensure proper spacing around headers and bullet points
report_text = re.sub(r'\n#{1,2} ', r'\n\n# ', report_text)
report_text = re.sub(r'\n- ', r'\n\n- ', report_text)
return report_text
except Exception as e:
return f"Error formatting report: {str(e)}"
async def run_analysis(api_key: str,
website_url: str,
product_category: str,
specific_product: str) -> str:
"""Handle the analysis submission"""
if not api_key.startswith("sk-"):
return "Please enter a valid OpenAI API key (should start with 'sk-')"
if not website_url:
return "Please enter a website URL"
if not product_category:
return "Please specify a product category"
try:
analyzer = AIShoppingAnalyzer(api_key)
result = await analyzer.analyze_site(
website_url=website_url,
product_category=product_category,
specific_product=specific_product if specific_product else None
)
return format_markdown_report(result)
except Exception as e:
return f"Error during analysis: {str(e)}"
with gr.Blocks(css=css) as demo:
gr.HTML("""
<div class="dashboard-container p-6">
<h1 class="text-2xl font-bold mb-2">AI Shopping Agent Analyzer</h1>
<p class="text-gray-600 mb-6">Analyze how your e-commerce site performs with AI shoppers</p>
</div>
""")
with gr.Row():
# Left column for inputs
with gr.Column(scale=1):
api_key = gr.Textbox(
label="OpenAI API Key",
placeholder="sk-...",
type="password",
container=True
)
website_url = gr.Textbox(
label="Website URL",
placeholder="https://your-store.com",
container=True
)
product_category = gr.Textbox(
label="Product Category",
placeholder="e.g., Electronics, Clothing, etc.",
container=True
)
specific_product = gr.Textbox(
label="Specific Product (Optional)",
placeholder="e.g., Blue Widget Model X",
container=True
)
analyze_button = gr.Button(
"Analyze Site",
size="lg"
)
# Right column for output
with gr.Column(scale=1):
analysis_output = gr.Markdown(
value="Results will appear here...",
label="Analysis Results",
elem_classes="analysis-output",
show_copy_button=True,
line_breaks=True
)
analyze_button.click(
fn=run_analysis,
inputs=[api_key, website_url, product_category, specific_product],
outputs=analysis_output
)
return demo
if __name__ == "__main__":
print("Setting up Playwright...")
try:
import subprocess
subprocess.run(
["playwright", "install", "chromium"],
check=True,
capture_output=True,
text=True
)
except Exception as e:
print(f"Warning: Playwright setup encountered an issue: {str(e)}")
print("Starting Gradio interface...")
demo = create_gradio_interface()
demo.launch()