Wootang01 commited on
Commit
3ec6971
·
1 Parent(s): 94e35d9

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +86 -0
app.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer, DebertaV2Tokenizer, DebertaV2Model
2
+ import sentencepiece
3
+ import streamlit as at
4
+ import pandas as pd
5
+ import spacy
6
+
7
+ example_list = [
8
+
9
+ ]
10
+
11
+ st.set_page_config(layout="wide")
12
+
13
+ st.title("Vocabulary Categorizer")
14
+
15
+ model_list = ['spacy/en_core_web_sm',
16
+ 'xlm-roberta-large-finetuned-conll03-english']
17
+
18
+ st.sidebar.header("Select a vocabulary categorizer")
19
+ model_checkpoint = st.sidebar.radio("", model_list)
20
+
21
+ st.sidebar.write("Which model highlights the most vocabulary words? Which model highlights the most accurately?")
22
+ st.sidebar.write("")
23
+
24
+ xlm_agg_strategy_info = "'aggregation_strategy' can be selected as 'simple' or 'none' for 'xlm-roberta'."
25
+
26
+ st.sidebar.header("Select Aggregation Strategy Type")
27
+ if model_checkpoint == "xlm-roberta-large-finetuned-conll03-english":
28
+ aggregation = st.sidebar.radio("", ('simple', 'none'))
29
+ st.sidebar.write(xlm_agg_strategy_info)
30
+ st.sidebar.write("")
31
+
32
+ st.subheader("Select Text Input Method")
33
+ input_method = st.radio("", ('Select from Examples', 'Write or Paste New Text'))
34
+ if input_method == 'Select from Examples':
35
+ selected_text = st.selectbox('Select Text from List', example_list, index=0, key=1)
36
+ st.subheader("Text to Run")
37
+ input_text = st.text_area("Selected Text", selected_text, height=128, max_chars=None, key=2)
38
+ elif input_method == "Write or Paste New Text":
39
+ st.subheader("Text to Run")
40
+ input_text = st.text_area('Write or Paste Text Below', value="", height=128, max_chars=None, key=2)
41
+
42
+ @st.cache(allow_output_mutation=True)
43
+ def setModel(model_checkpoint, aggregation):
44
+ model = AutoModelForTokenClassification.from_pretrained(model_checkpoint)
45
+ tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
46
+ return pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy=aggregation)
47
+
48
+ @st.cache(allow_output_mutation=True)
49
+ def get_html(html: str):
50
+ WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem; margin-bottom: 2.5rem">{}</div>"""
51
+ html = html.replace("\n", " ")
52
+ return WRAPPER.format(html)
53
+
54
+ Run_Button = st.button("Run", key=None)
55
+ if Run_Button == True:
56
+
57
+ ner_pipeline = setModel(model_checkpoint, aggregation)
58
+ output = ner_pipeline(input_text)
59
+
60
+ df = pd.DataFrame.from_dict(output)
61
+ if aggregation != "none":
62
+ cols_to_keep = ['word','entity_group','score','start','end']
63
+ else:
64
+ cols_to_keep = ['word','entity','score','start','end']
65
+ df_final = df[cols_to_keep]
66
+
67
+ st.subheader("Recognized Entities")
68
+ st.dataframe(df_final)
69
+
70
+ st.subheader("Spacy Style Display")
71
+ spacy_display = {}
72
+ spacy_display["ents"] = []
73
+ spacy_display["text"] = input_text
74
+ spacy_display["title"] = None
75
+
76
+ for entity in output:
77
+ if aggregation != "none":
78
+ spacy_display["ents"].append({"start": entity["start"], "end": entity["end"], "label": entity["entity_group"]})
79
+ else:
80
+ spacy_display["ents"].append({"start": entity["start"], "end": entity["end"], "label": entity["entity"]})
81
+
82
+ entity_list = ["PER", "LOC", "ORG", "MISC"]
83
+ colors = {'PER': '#85DCDF', 'LOC': '#DF85DC', 'ORG': '#DCDF85', 'MISC': '#85ABDF',}
84
+ html = spacy.displacy.render(spacy_display, style="ent", minify=True, manual=True, options={"ents": entity_list, "colors": colors})
85
+ style = "<style>mark.entity { display: inline-block }</style>"
86
+ st.write(f"{style}{get_html(html)}", unsafe_allow_html=True)