Wiuhh commited on
Commit
4af9859
·
verified ·
1 Parent(s): e42a465

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +50 -39
src/streamlit_app.py CHANGED
@@ -1,40 +1,51 @@
1
- import altair as alt
2
- import numpy as np
3
- import pandas as pd
4
  import streamlit as st
5
-
6
- """
7
- # Welcome to Streamlit!
8
-
9
- Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
10
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
11
- forums](https://discuss.streamlit.io).
12
-
13
- In the meantime, below is an example of what you can do with just a few lines of code:
14
- """
15
-
16
- num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
17
- num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
18
-
19
- indices = np.linspace(0, 1, num_points)
20
- theta = 2 * np.pi * num_turns * indices
21
- radius = indices
22
-
23
- x = radius * np.cos(theta)
24
- y = radius * np.sin(theta)
25
-
26
- df = pd.DataFrame({
27
- "x": x,
28
- "y": y,
29
- "idx": indices,
30
- "rand": np.random.randn(num_points),
31
- })
32
-
33
- st.altair_chart(alt.Chart(df, height=700, width=700)
34
- .mark_point(filled=True)
35
- .encode(
36
- x=alt.X("x", axis=None),
37
- y=alt.Y("y", axis=None),
38
- color=alt.Color("idx", legend=None, scale=alt.Scale()),
39
- size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
40
- ))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ import requests
3
+ import io
4
+ from PIL import Image
5
+ import os
6
+
7
+ # Load Hugging Face token from environment
8
+ hf_token = os.environ.get("hf_token")
9
+
10
+ # API URLs for different models
11
+ API_URL_KVI = "https://api-inference.huggingface.co/models/Kvikontent/kviImageR2.0"
12
+ API_URL_MJ = "https://api-inference.huggingface.co/models/Kvikontent/midjourney-v6"
13
+ API_URL_DALLE = "https://api-inference.huggingface.co/models/ehristoforu/dalle-3-xl"
14
+
15
+ # Headers with Hugging Face token
16
+ headers = {"Authorization": f"Bearer {hf_token}"}
17
+
18
+ # Function to query Hugging Face API
19
+ def query(payload):
20
+ response = requests.post(API_URL, headers=headers, json=payload)
21
+ return response.content
22
+
23
+ # Streamlit UI
24
+ st.title("Text To Image models")
25
+ st.write("Choose model and enter a prompt")
26
+
27
+ model = st.selectbox(
28
+ "Choose model",
29
+ ("KVIImageR2.0", "Midjourney V6", "Dalle 3")
30
+ )
31
+
32
+ prompt = st.text_input("Enter prompt")
33
+
34
+ # Generate Image
35
+ if prompt:
36
+ if model == "KVIImageR2.0":
37
+ API_URL = API_URL_KVI
38
+ elif model == "Midjourney V6":
39
+ API_URL = API_URL_MJ
40
+ elif model == "Dalle 3":
41
+ API_URL = API_URL_DALLE
42
+
43
+ image_bytes = query({"inputs": prompt})
44
+
45
+ try:
46
+ image = Image.open(io.BytesIO(image_bytes))
47
+ st.image(image, caption="Generated Image")
48
+ st.info("Image generated successfully!")
49
+ except Exception as e:
50
+ st.error("Failed to generate image. Please try again.")
51
+ st.text(str(e))