Free-image-generation / src /streamlit_app.py
Wiuhh's picture
Update src/streamlit_app.py
42eac23 verified
raw
history blame
2.19 kB
import streamlit as st
import requests
import io
from PIL import Image
import os
# Load Hugging Face token from environment
hf_token = os.environ.get("hf_token")
# API URLs for different models
API_URL_KVI = "https://api-inference.huggingface.co/models/Kvikontent/kviImageR2.0"
API_URL_MJ = "https://api-inference.huggingface.co/models/Kvikontent/midjourney-v6"
API_URL_DALLE = "https://api-inference.huggingface.co/models/ehristoforu/dalle-3-xl"
# Headers with Hugging Face token
headers = {"Authorization": f"Bearer {hf_token}"}
# Function to query Hugging Face API
def query(payload, api_url):
response = requests.post(api_url, headers=headers, json=payload)
return response.content
# Streamlit UI
st.title("Text To Image Models")
st.write("Choose model and enter a prompt")
model = st.selectbox(
"Choose model",
("KVIImageR2.0", "Midjourney V6", "Dalle 3")
)
prompt = st.text_input("Enter prompt")
# Button for generating image
if st.button("Generate Image"):
if prompt:
if model == "KVIImageR2.0":
API_URL = API_URL_KVI
elif model == "Midjourney V6":
API_URL = API_URL_MJ
elif model == "Dalle 3":
API_URL = API_URL_DALLE
with st.spinner("Generating image... Please wait."):
image_bytes = query({"inputs": prompt}, API_URL)
try:
image = Image.open(io.BytesIO(image_bytes))
# Image preview
st.image(image, caption="Generated Image Preview", use_column_width=True)
# Download option
img_buffer = io.BytesIO()
image.save(img_buffer, format="PNG")
st.download_button(
label="Download Image",
data=img_buffer.getvalue(),
file_name="generated_image.png",
mime="image/png"
)
st.success("Image generated successfully!")
except Exception as e:
st.error("Failed to generate image. Please try again.")
st.text(str(e))
else:
st.warning("Please enter a prompt before generating.")