Spaces:
Sleeping
Sleeping
Delete Mini_Project_1_Part_1.py
Browse files- Mini_Project_1_Part_1.py +0 -402
Mini_Project_1_Part_1.py
DELETED
@@ -1,402 +0,0 @@
|
|
1 |
-
### Import necessary libraries: here you will use streamlit library to run a text search demo, please make sure to install it.
|
2 |
-
# !pip install streamlit sentence-transformers gdown matplotlib
|
3 |
-
# !pip install pyngrok
|
4 |
-
import subprocess
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
#subprocess.run(["pip", "install", "streamlit", "sentence-transformers", "gdown", "matplotlib", "pyngrok"], check=True)
|
9 |
-
import subprocess
|
10 |
-
|
11 |
-
subprocess.run([
|
12 |
-
"pip", "install",
|
13 |
-
"streamlit",
|
14 |
-
"sentence-transformers",
|
15 |
-
"gdown",
|
16 |
-
"matplotlib",
|
17 |
-
"pyngrok",
|
18 |
-
"tf-keras" # 添加 tf-keras 到依赖列表
|
19 |
-
], check=True)
|
20 |
-
|
21 |
-
import streamlit as st
|
22 |
-
import numpy as np
|
23 |
-
import numpy.linalg as la
|
24 |
-
import pickle
|
25 |
-
import os
|
26 |
-
import gdown
|
27 |
-
from sentence_transformers import SentenceTransformer
|
28 |
-
import matplotlib.pyplot as plt
|
29 |
-
import math
|
30 |
-
from pyngrok import ngrok
|
31 |
-
import os
|
32 |
-
import subprocess
|
33 |
-
|
34 |
-
|
35 |
-
### Some predefined utility functions for you to load the text embeddings
|
36 |
-
|
37 |
-
# Function to Load Glove Embeddings
|
38 |
-
def load_glove_embeddings(glove_path="Data/embeddings.pkl"):
|
39 |
-
with open(glove_path, "rb") as f:
|
40 |
-
embeddings_dict = pickle.load(f, encoding="latin1")
|
41 |
-
|
42 |
-
return embeddings_dict
|
43 |
-
|
44 |
-
def get_model_id_gdrive(model_type):
|
45 |
-
if model_type == "25d":
|
46 |
-
word_index_id = "13qMXs3-oB9C6kfSRMwbAtzda9xuAUtt8"
|
47 |
-
embeddings_id = "1-RXcfBvWyE-Av3ZHLcyJVsps0RYRRr_2"
|
48 |
-
elif model_type == "50d":
|
49 |
-
embeddings_id = "1DBaVpJsitQ1qxtUvV1Kz7ThDc3az16kZ"
|
50 |
-
word_index_id = "1rB4ksHyHZ9skes-fJHMa2Z8J1Qa7awQ9"
|
51 |
-
elif model_type == "100d":
|
52 |
-
word_index_id = "1-oWV0LqG3fmrozRZ7WB1jzeTJHRUI3mq"
|
53 |
-
embeddings_id = "1SRHfX130_6Znz7zbdfqboKosz-PfNvNp"
|
54 |
-
|
55 |
-
return word_index_id, embeddings_id
|
56 |
-
|
57 |
-
def download_glove_embeddings_gdrive(model_type):
|
58 |
-
# Get glove embeddings from google drive
|
59 |
-
word_index_id, embeddings_id = get_model_id_gdrive(model_type)
|
60 |
-
|
61 |
-
# Use gdown to get files from google drive
|
62 |
-
embeddings_temp = "embeddings_" + str(model_type) + "_temp.npy"
|
63 |
-
word_index_temp = "word_index_dict_" + str(model_type) + "_temp.pkl"
|
64 |
-
|
65 |
-
# Download word_index pickle file
|
66 |
-
print("Downloading word index dictionary....\n")
|
67 |
-
gdown.download(id=word_index_id, output=word_index_temp, quiet=False)
|
68 |
-
|
69 |
-
# Download embeddings numpy file
|
70 |
-
print("Donwloading embedings...\n\n")
|
71 |
-
gdown.download(id=embeddings_id, output=embeddings_temp, quiet=False)
|
72 |
-
|
73 |
-
# @st.cache_data()
|
74 |
-
def load_glove_embeddings_gdrive(model_type):
|
75 |
-
word_index_temp = "word_index_dict_" + str(model_type) + "_temp.pkl"
|
76 |
-
embeddings_temp = "embeddings_" + str(model_type) + "_temp.npy"
|
77 |
-
|
78 |
-
# Load word index dictionary
|
79 |
-
word_index_dict = pickle.load(open(word_index_temp, "rb"), encoding="latin")
|
80 |
-
|
81 |
-
# Load embeddings numpy
|
82 |
-
embeddings = np.load(embeddings_temp)
|
83 |
-
|
84 |
-
return word_index_dict, embeddings
|
85 |
-
|
86 |
-
@st.cache_resource()
|
87 |
-
def load_sentence_transformer_model(model_name):
|
88 |
-
sentenceTransformer = SentenceTransformer(model_name)
|
89 |
-
return sentenceTransformer
|
90 |
-
|
91 |
-
def get_sentence_transformer_embeddings(sentence, model_name="all-MiniLM-L6-v2"):
|
92 |
-
"""
|
93 |
-
Get sentence transformer embeddings for a sentence
|
94 |
-
"""
|
95 |
-
# 384 dimensional embedding
|
96 |
-
# Default model: https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
|
97 |
-
|
98 |
-
sentenceTransformer = load_sentence_transformer_model(model_name)
|
99 |
-
|
100 |
-
try:
|
101 |
-
return sentenceTransformer.encode(sentence)
|
102 |
-
except:
|
103 |
-
if model_name == "all-MiniLM-L6-v2":
|
104 |
-
return np.zeros(384)
|
105 |
-
else:
|
106 |
-
return np.zeros(512)
|
107 |
-
|
108 |
-
def get_glove_embeddings(word, word_index_dict, embeddings, model_type):
|
109 |
-
"""
|
110 |
-
Get glove embedding for a single word
|
111 |
-
"""
|
112 |
-
if word.lower() in word_index_dict:
|
113 |
-
return embeddings[word_index_dict[word.lower()]]
|
114 |
-
else:
|
115 |
-
return np.zeros(int(model_type.split("d")[0]))
|
116 |
-
|
117 |
-
def get_category_embeddings(embeddings_metadata):
|
118 |
-
"""
|
119 |
-
Get embeddings for each category
|
120 |
-
1. Split categories into words
|
121 |
-
2. Get embeddings for each word
|
122 |
-
"""
|
123 |
-
model_name = embeddings_metadata["model_name"]
|
124 |
-
st.session_state["cat_embed_" + model_name] = {}
|
125 |
-
for category in st.session_state.categories.split(" "):
|
126 |
-
if model_name:
|
127 |
-
if not category in st.session_state["cat_embed_" + model_name]:
|
128 |
-
st.session_state["cat_embed_" + model_name][category] = get_sentence_transformer_embeddings(category, model_name=model_name)
|
129 |
-
else:
|
130 |
-
if not category in st.session_state["cat_embed_" + model_name]:
|
131 |
-
st.session_state["cat_embed_" + model_name][category] = get_sentence_transformer_embeddings(category)
|
132 |
-
|
133 |
-
def update_category_embeddings(embeddings_metadata):
|
134 |
-
"""
|
135 |
-
Update embeddings for each category
|
136 |
-
"""
|
137 |
-
get_category_embeddings(embeddings_metadata)
|
138 |
-
|
139 |
-
### Plotting utility functions
|
140 |
-
|
141 |
-
def plot_piechart(sorted_cosine_scores_items):
|
142 |
-
sorted_cosine_scores = np.array([
|
143 |
-
sorted_cosine_scores_items[index][1]
|
144 |
-
for index in range(len(sorted_cosine_scores_items))
|
145 |
-
]
|
146 |
-
)
|
147 |
-
categories = st.session_state.categories.split(" ")
|
148 |
-
categories_sorted = [
|
149 |
-
categories[sorted_cosine_scores_items[index][0]]
|
150 |
-
for index in range(len(sorted_cosine_scores_items))
|
151 |
-
]
|
152 |
-
fig, ax = plt.subplots()
|
153 |
-
ax.pie(sorted_cosine_scores, labels=categories_sorted, autopct="%1.1f%%")
|
154 |
-
st.pyplot(fig) # Figure
|
155 |
-
|
156 |
-
def plot_piechart_helper(sorted_cosine_scores_items):
|
157 |
-
sorted_cosine_scores = np.array(
|
158 |
-
[
|
159 |
-
sorted_cosine_scores_items[index][1]
|
160 |
-
for index in range(len(sorted_cosine_scores_items))
|
161 |
-
]
|
162 |
-
)
|
163 |
-
categories = st.session_state.categories.split(" ")
|
164 |
-
categories_sorted = [
|
165 |
-
categories[sorted_cosine_scores_items[index][0]]
|
166 |
-
for index in range(len(sorted_cosine_scores_items))
|
167 |
-
]
|
168 |
-
fig, ax = plt.subplots(figsize=(3, 3))
|
169 |
-
my_explode = np.zeros(len(categories_sorted))
|
170 |
-
my_explode[0] = 0.2
|
171 |
-
if len(categories_sorted) == 3:
|
172 |
-
my_explode[1] = 0.1 # explode this by 0.2
|
173 |
-
elif len(categories_sorted) > 3:
|
174 |
-
my_explode[2] = 0.05
|
175 |
-
ax.pie(
|
176 |
-
sorted_cosine_scores,
|
177 |
-
labels=categories_sorted,
|
178 |
-
autopct="%1.1f%%",
|
179 |
-
explode=my_explode,
|
180 |
-
)
|
181 |
-
|
182 |
-
return fig
|
183 |
-
|
184 |
-
def plot_piecharts(sorted_cosine_scores_models):
|
185 |
-
scores_list = []
|
186 |
-
categories = st.session_state.categories.split(" ")
|
187 |
-
index = 0
|
188 |
-
for model in sorted_cosine_scores_models:
|
189 |
-
scores_list.append(sorted_cosine_scores_models[model])
|
190 |
-
index += 1
|
191 |
-
|
192 |
-
if len(sorted_cosine_scores_models) == 2:
|
193 |
-
fig, (ax1, ax2) = plt.subplots(2)
|
194 |
-
|
195 |
-
categories_sorted = [
|
196 |
-
categories[scores_list[0][index][0]] for index in range(len(scores_list[0]))
|
197 |
-
]
|
198 |
-
sorted_scores = np.array(
|
199 |
-
[scores_list[0][index][1] for index in range(len(scores_list[0]))]
|
200 |
-
)
|
201 |
-
ax1.pie(sorted_scores, labels=categories_sorted, autopct="%1.1f%%")
|
202 |
-
|
203 |
-
categories_sorted = [
|
204 |
-
categories[scores_list[1][index][0]] for index in range(len(scores_list[1]))
|
205 |
-
]
|
206 |
-
sorted_scores = np.array(
|
207 |
-
[scores_list[1][index][1] for index in range(len(scores_list[1]))]
|
208 |
-
)
|
209 |
-
ax2.pie(sorted_scores, labels=categories_sorted, autopct="%1.1f%%")
|
210 |
-
|
211 |
-
st.pyplot(fig)
|
212 |
-
|
213 |
-
def plot_alatirchart(sorted_cosine_scores_models):
|
214 |
-
models = list(sorted_cosine_scores_models.keys())
|
215 |
-
tabs = st.tabs(models)
|
216 |
-
figs = {}
|
217 |
-
for model in models:
|
218 |
-
figs[model] = plot_piechart_helper(sorted_cosine_scores_models[model])
|
219 |
-
|
220 |
-
for index in range(len(tabs)):
|
221 |
-
with tabs[index]:
|
222 |
-
st.pyplot(figs[models[index]])
|
223 |
-
|
224 |
-
### Your Part To Complete: Follow the instructions in each function below to complete the similarity calculation between text embeddings
|
225 |
-
|
226 |
-
# Task I: Compute Cosine Similarity
|
227 |
-
def cosine_similarity(x, y):
|
228 |
-
"""
|
229 |
-
Exponentiated cosine similarity
|
230 |
-
1. Compute cosine similarity
|
231 |
-
2. Exponentiate cosine similarity
|
232 |
-
3. Return exponentiated cosine similarity
|
233 |
-
(20 pts)
|
234 |
-
"""
|
235 |
-
cosine_sim = np.dot(x, y) / (la.norm(x) * la.norm(y))
|
236 |
-
return np.exp(cosine_sim)
|
237 |
-
|
238 |
-
# Task II: Average Glove Embedding Calculation
|
239 |
-
def averaged_glove_embeddings_gdrive(sentence, word_index_dict, embeddings, model_type=50):
|
240 |
-
"""
|
241 |
-
Get averaged glove embeddings for a sentence
|
242 |
-
1. Split sentence into words
|
243 |
-
2. Get embeddings for each word
|
244 |
-
3. Add embeddings for each word
|
245 |
-
4. Divide by number of words
|
246 |
-
5. Return averaged embeddings
|
247 |
-
(30 pts)
|
248 |
-
"""
|
249 |
-
words = sentence.split()
|
250 |
-
embedding = np.zeros(int(model_type.split("d")[0]))
|
251 |
-
for word in words:
|
252 |
-
embedding += get_glove_embeddings(word, word_index_dict, embeddings, model_type)
|
253 |
-
return embedding / len(words)
|
254 |
-
|
255 |
-
# Task III: Sort the cosine similarity
|
256 |
-
def get_sorted_cosine_similarity(embeddings_metadata):
|
257 |
-
"""
|
258 |
-
Get sorted cosine similarity between input sentence and categories
|
259 |
-
Steps:
|
260 |
-
1. Get embeddings for input sentence
|
261 |
-
2. Get embeddings for categories (if not found, update category embeddings)
|
262 |
-
3. Compute cosine similarity between input sentence and categories
|
263 |
-
4. Sort cosine similarity
|
264 |
-
5. Return sorted cosine similarity
|
265 |
-
(50 pts)
|
266 |
-
"""
|
267 |
-
categories = st.session_state.categories.split(" ")
|
268 |
-
cosine_sim = {}
|
269 |
-
if embeddings_metadata["embedding_model"] == "glove":
|
270 |
-
word_index_dict = embeddings_metadata["word_index_dict"]
|
271 |
-
embeddings = embeddings_metadata["embeddings"]
|
272 |
-
model_type = embeddings_metadata["model_type"]
|
273 |
-
|
274 |
-
input_embedding = averaged_glove_embeddings_gdrive(st.session_state.text_search,
|
275 |
-
word_index_dict,
|
276 |
-
embeddings, model_type)
|
277 |
-
|
278 |
-
for index, category in enumerate(categories):
|
279 |
-
category_embedding = averaged_glove_embeddings_gdrive(category, word_index_dict, embeddings, model_type)
|
280 |
-
cosine_sim[index] = cosine_similarity(input_embedding, category_embedding)
|
281 |
-
|
282 |
-
else:
|
283 |
-
model_name = embeddings_metadata["model_name"]
|
284 |
-
if not "cat_embed_" + model_name in st.session_state:
|
285 |
-
get_category_embeddings(embeddings_metadata)
|
286 |
-
|
287 |
-
category_embeddings = st.session_state["cat_embed_" + model_name]
|
288 |
-
|
289 |
-
input_embedding = get_sentence_transformer_embeddings(st.session_state.text_search, model_name=model_name)
|
290 |
-
for index, category in enumerate(categories):
|
291 |
-
cosine_sim[index] = cosine_similarity(input_embedding, category_embeddings[category])
|
292 |
-
|
293 |
-
sorted_cosine_sim = sorted(cosine_sim.items(), key=lambda x: x[1], reverse=True)
|
294 |
-
return sorted_cosine_sim
|
295 |
-
|
296 |
-
### Below is the main function, creating the app demo for text search engine using the text embeddings.
|
297 |
-
|
298 |
-
if __name__ == "__main__":
|
299 |
-
# Initialize session state variables
|
300 |
-
if "categories" not in st.session_state:
|
301 |
-
st.session_state["categories"] = "Flowers Colors Cars Weather Food"
|
302 |
-
|
303 |
-
if "text_search" not in st.session_state:
|
304 |
-
st.session_state["text_search"] = "Roses are red, trucks are blue, and Seattle is grey right now"
|
305 |
-
|
306 |
-
st.sidebar.title("GloVe Twitter")
|
307 |
-
st.sidebar.markdown(
|
308 |
-
"""
|
309 |
-
GloVe is an unsupervised learning algorithm for obtaining vector representations for words. Pretrained on
|
310 |
-
2 billion tweets with vocabulary size of 1.2 million. Download from [Stanford NLP](http://nlp.stanford.edu/data/glove.twitter.27B.zip).
|
311 |
-
|
312 |
-
Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. *GloVe: Global Vectors for Word Representation*.
|
313 |
-
"""
|
314 |
-
)
|
315 |
-
|
316 |
-
model_type = st.sidebar.selectbox("Choose the model", ("25d", "50d", "100d"), index=1)
|
317 |
-
|
318 |
-
st.title("Search Based Retrieval Demo")
|
319 |
-
st.subheader(
|
320 |
-
"Pass in space separated categories you want this search demo to be about."
|
321 |
-
)
|
322 |
-
st.text_input(
|
323 |
-
label="Categories", key="categories", value=st.session_state["categories"]
|
324 |
-
)
|
325 |
-
|
326 |
-
st.subheader("Pass in an input word or even a sentence")
|
327 |
-
st.text_input(
|
328 |
-
label="Input your sentence",
|
329 |
-
key="text_search",
|
330 |
-
value=st.session_state["text_search"],
|
331 |
-
)
|
332 |
-
|
333 |
-
embeddings_path = "embeddings_" + str(model_type) + "_temp.npy"
|
334 |
-
word_index_dict_path = "word_index_dict_" + str(model_type) + "_temp.pkl"
|
335 |
-
if not os.path.isfile(embeddings_path) or not os.path.isfile(word_index_dict_path):
|
336 |
-
with st.spinner("Downloading glove embeddings..."):
|
337 |
-
download_glove_embeddings_gdrive(model_type)
|
338 |
-
|
339 |
-
word_index_dict, embeddings = load_glove_embeddings_gdrive(model_type)
|
340 |
-
|
341 |
-
if st.session_state.text_search:
|
342 |
-
embeddings_metadata = {
|
343 |
-
"embedding_model": "glove",
|
344 |
-
"word_index_dict": word_index_dict,
|
345 |
-
"embeddings": embeddings,
|
346 |
-
"model_type": model_type,
|
347 |
-
}
|
348 |
-
with st.spinner("Obtaining Cosine similarity for Glove..."):
|
349 |
-
sorted_cosine_sim_glove = get_sorted_cosine_similarity(embeddings_metadata)
|
350 |
-
|
351 |
-
embeddings_metadata = {"embedding_model": "transformers", "model_name": "all-MiniLM-L6-v2"}
|
352 |
-
with st.spinner("Obtaining Cosine similarity for 384d sentence transformer..."):
|
353 |
-
sorted_cosine_sim_transformer = get_sorted_cosine_similarity(embeddings_metadata)
|
354 |
-
|
355 |
-
st.subheader(
|
356 |
-
"Closest word I have between: "
|
357 |
-
+ st.session_state.categories
|
358 |
-
+ " as per different Embeddings"
|
359 |
-
)
|
360 |
-
|
361 |
-
plot_alatirchart(
|
362 |
-
{
|
363 |
-
"glove_" + str(model_type): sorted_cosine_sim_glove,
|
364 |
-
"sentence_transformer_384": sorted_cosine_sim_transformer,
|
365 |
-
}
|
366 |
-
)
|
367 |
-
|
368 |
-
st.write("")
|
369 |
-
st.write(
|
370 |
-
"Demo developed by [Your Name](https://www.linkedin.com/in/your_id/ - Optional)"
|
371 |
-
)
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
ngrok.set_auth_token("2sEcAp5puu8NYKh4cjBKmlEPLkj_77HPkRNQNMx4dcTUGuLJS")
|
376 |
-
|
377 |
-
|
378 |
-
# 创建 app.py 文件
|
379 |
-
# with open('app.py', 'w') as f:
|
380 |
-
# f.write("""YOUR_FULL_STREAMLIT_CODE_HERE""")
|
381 |
-
|
382 |
-
# # 启动 ngrok
|
383 |
-
# public_url = ngrok.connect(port=8501)
|
384 |
-
# print(f"Streamlit App URL: {public_url}")
|
385 |
-
|
386 |
-
# # 启动 Streamlit
|
387 |
-
# !streamlit run app.py --server.port 8501
|
388 |
-
|
389 |
-
from pyngrok import ngrok
|
390 |
-
|
391 |
-
# 使用自定义配置启动 ngrok 隧道
|
392 |
-
tunnel_config = {
|
393 |
-
"addr": 8501, # 本地端口
|
394 |
-
"proto": "http", # 使用 HTTP 协议
|
395 |
-
}
|
396 |
-
public_url = ngrok.connect(**tunnel_config)
|
397 |
-
print(f"Streamlit App URL: {public_url}")
|
398 |
-
|
399 |
-
# # 启动 Streamlit
|
400 |
-
#!streamlit run app.py --server.port 8501
|
401 |
-
subprocess.run(["streamlit", "run", "/Users/williamren/Downloads/Mini_Project_1_Part_1.py", "--server.port", "8501"])
|
402 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|