John6666 commited on
Commit
f22289a
·
verified ·
1 Parent(s): d85bcb0

Delete convert_url_to_diffusers_sdxl.py

Browse files
Files changed (1) hide show
  1. convert_url_to_diffusers_sdxl.py +0 -300
convert_url_to_diffusers_sdxl.py DELETED
@@ -1,300 +0,0 @@
1
- import argparse
2
- from pathlib import Path
3
- import os
4
- import torch
5
- from diffusers import StableDiffusionXLPipeline, AutoencoderKL
6
- # also requires aria, gdown, peft, huggingface_hub, safetensors, transformers, accelerate, pytorch_lightning
7
-
8
-
9
- def list_sub(a, b):
10
- return [e for e in a if e not in b]
11
-
12
-
13
- def is_repo_name(s):
14
- import re
15
- return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s)
16
-
17
-
18
- def download_thing(directory, url, civitai_api_key=""):
19
- url = url.strip()
20
- if "drive.google.com" in url:
21
- original_dir = os.getcwd()
22
- os.chdir(directory)
23
- os.system(f"gdown --fuzzy {url}")
24
- os.chdir(original_dir)
25
- elif "huggingface.co" in url:
26
- url = url.replace("?download=true", "")
27
- if "/blob/" in url:
28
- url = url.replace("/blob/", "/resolve/")
29
- os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
30
- else:
31
- os.system (f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
32
- elif "civitai.com" in url:
33
- if "?" in url:
34
- url = url.split("?")[0]
35
- if civitai_api_key:
36
- url = url + f"?token={civitai_api_key}"
37
- os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
38
- else:
39
- print("You need an API key to download Civitai models.")
40
- else:
41
- os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
42
-
43
-
44
- def get_local_model_list(dir_path):
45
- model_list = []
46
- valid_extensions = ('.safetensors')
47
- for file in Path(dir_path).glob("*"):
48
- if file.suffix in valid_extensions:
49
- file_path = str(Path(f"{dir_path}/{file.name}"))
50
- model_list.append(file_path)
51
- return model_list
52
-
53
-
54
- def get_download_file(temp_dir, url, civitai_key):
55
- if not "http" in url and is_repo_name(url) and not Path(url).exists():
56
- print(f"Use HF Repo: {url}")
57
- new_file = url
58
- elif not "http" in url and Path(url).exists():
59
- print(f"Use local file: {url}")
60
- new_file = url
61
- elif Path(f"{temp_dir}/{url.split('/')[-1]}").exists():
62
- print(f"File to download alreday exists: {url}")
63
- new_file = f"{temp_dir}/{url.split('/')[-1]}"
64
- else:
65
- print(f"Start downloading: {url}")
66
- before = get_local_model_list(temp_dir)
67
- try:
68
- download_thing(temp_dir, url.strip(), civitai_key)
69
- except Exception:
70
- print(f"Download failed: {url}")
71
- return ""
72
- after = get_local_model_list(temp_dir)
73
- new_file = list_sub(after, before)[0] if list_sub(after, before) else ""
74
- if not new_file:
75
- print(f"Download failed: {url}")
76
- return ""
77
- print(f"Download completed: {url}")
78
- return new_file
79
-
80
-
81
- from diffusers import (
82
- DPMSolverMultistepScheduler,
83
- DPMSolverSinglestepScheduler,
84
- KDPM2DiscreteScheduler,
85
- EulerDiscreteScheduler,
86
- EulerAncestralDiscreteScheduler,
87
- HeunDiscreteScheduler,
88
- LMSDiscreteScheduler,
89
- DDIMScheduler,
90
- DEISMultistepScheduler,
91
- UniPCMultistepScheduler,
92
- LCMScheduler,
93
- PNDMScheduler,
94
- KDPM2AncestralDiscreteScheduler,
95
- DPMSolverSDEScheduler,
96
- EDMDPMSolverMultistepScheduler,
97
- DDPMScheduler,
98
- EDMEulerScheduler,
99
- TCDScheduler,
100
- )
101
-
102
-
103
- SCHEDULER_CONFIG_MAP = {
104
- "DPM++ 2M": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False}),
105
- "DPM++ 2M Karras": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True}),
106
- "DPM++ 2M SDE": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False, "algorithm_type": "sde-dpmsolver++"}),
107
- "DPM++ 2M SDE Karras": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True, "algorithm_type": "sde-dpmsolver++"}),
108
- "DPM++ 2S": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": False}),
109
- "DPM++ 2S Karras": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": True}),
110
- "DPM++ 1S": (DPMSolverMultistepScheduler, {"solver_order": 1}),
111
- "DPM++ 1S Karras": (DPMSolverMultistepScheduler, {"solver_order": 1, "use_karras_sigmas": True}),
112
- "DPM++ 3M": (DPMSolverMultistepScheduler, {"solver_order": 3}),
113
- "DPM++ 3M Karras": (DPMSolverMultistepScheduler, {"solver_order": 3, "use_karras_sigmas": True}),
114
- "DPM++ SDE": (DPMSolverSDEScheduler, {"use_karras_sigmas": False}),
115
- "DPM++ SDE Karras": (DPMSolverSDEScheduler, {"use_karras_sigmas": True}),
116
- "DPM2": (KDPM2DiscreteScheduler, {}),
117
- "DPM2 Karras": (KDPM2DiscreteScheduler, {"use_karras_sigmas": True}),
118
- "DPM2 a": (KDPM2AncestralDiscreteScheduler, {}),
119
- "DPM2 a Karras": (KDPM2AncestralDiscreteScheduler, {"use_karras_sigmas": True}),
120
- "Euler": (EulerDiscreteScheduler, {}),
121
- "Euler a": (EulerAncestralDiscreteScheduler, {}),
122
- "Euler trailing": (EulerDiscreteScheduler, {"timestep_spacing": "trailing", "prediction_type": "sample"}),
123
- "Euler a trailing": (EulerAncestralDiscreteScheduler, {"timestep_spacing": "trailing"}),
124
- "Heun": (HeunDiscreteScheduler, {}),
125
- "Heun Karras": (HeunDiscreteScheduler, {"use_karras_sigmas": True}),
126
- "LMS": (LMSDiscreteScheduler, {}),
127
- "LMS Karras": (LMSDiscreteScheduler, {"use_karras_sigmas": True}),
128
- "DDIM": (DDIMScheduler, {}),
129
- "DDIM trailing": (DDIMScheduler, {"timestep_spacing": "trailing"}),
130
- "DEIS": (DEISMultistepScheduler, {}),
131
- "UniPC": (UniPCMultistepScheduler, {}),
132
- "UniPC Karras": (UniPCMultistepScheduler, {"use_karras_sigmas": True}),
133
- "PNDM": (PNDMScheduler, {}),
134
- "Euler EDM": (EDMEulerScheduler, {}),
135
- "Euler EDM Karras": (EDMEulerScheduler, {"use_karras_sigmas": True}),
136
- "DPM++ 2M EDM": (EDMDPMSolverMultistepScheduler, {"solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}),
137
- "DPM++ 2M EDM Karras": (EDMDPMSolverMultistepScheduler, {"use_karras_sigmas": True, "solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}),
138
- "DDPM": (DDPMScheduler, {}),
139
-
140
- "DPM++ 2M Lu": (DPMSolverMultistepScheduler, {"use_lu_lambdas": True}),
141
- "DPM++ 2M Ef": (DPMSolverMultistepScheduler, {"euler_at_final": True}),
142
- "DPM++ 2M SDE Lu": (DPMSolverMultistepScheduler, {"use_lu_lambdas": True, "algorithm_type": "sde-dpmsolver++"}),
143
- "DPM++ 2M SDE Ef": (DPMSolverMultistepScheduler, {"algorithm_type": "sde-dpmsolver++", "euler_at_final": True}),
144
-
145
- "LCM": (LCMScheduler, {}),
146
- "TCD": (TCDScheduler, {}),
147
- "LCM trailing": (LCMScheduler, {"timestep_spacing": "trailing"}),
148
- "TCD trailing": (TCDScheduler, {"timestep_spacing": "trailing"}),
149
- "LCM Auto-Loader": (LCMScheduler, {}),
150
- "TCD Auto-Loader": (TCDScheduler, {}),
151
- }
152
-
153
-
154
- def get_scheduler_config(name):
155
- if not name in SCHEDULER_CONFIG_MAP.keys(): return SCHEDULER_CONFIG_MAP["Euler a"]
156
- return SCHEDULER_CONFIG_MAP[name]
157
-
158
-
159
- def save_readme_md(dir, url):
160
- orig_url = ""
161
- orig_name = ""
162
- if is_repo_name(url):
163
- orig_name = url
164
- orig_url = f"https://huggingface.co/{url}/"
165
- elif "http" in url:
166
- orig_name = url
167
- orig_url = url
168
- if orig_name and orig_url:
169
- md = f"""---
170
- license: other
171
- language:
172
- - en
173
- library_name: diffusers
174
- pipeline_tag: text-to-image
175
- tags:
176
- - text-to-image
177
- ---
178
- Converted from [{orig_name}]({orig_url}).
179
- """
180
- else:
181
- md = f"""---
182
- license: other
183
- language:
184
- - en
185
- library_name: diffusers
186
- pipeline_tag: text-to-image
187
- tags:
188
- - text-to-image
189
- ---
190
- """
191
- path = str(Path(dir, "README.md"))
192
- with open(path, mode='w', encoding="utf-8") as f:
193
- f.write(md)
194
-
195
-
196
- def fuse_loras(pipe, civitai_key="", lora_dict={}, temp_dir="."):
197
- if not lora_dict or not isinstance(lora_dict, dict): return pipe
198
- a_list = []
199
- w_list = []
200
- for k, v in lora_dict.items():
201
- if not k: continue
202
- new_lora_file = get_download_file(temp_dir, k, civitai_key)
203
- if not new_lora_file or not Path(new_lora_file).exists():
204
- print(f"LoRA not found: {k}")
205
- continue
206
- w_name = Path(new_lora_file).name
207
- a_name = Path(new_lora_file).stem
208
- pipe.load_lora_weights(new_lora_file, weight_name = w_name, adapter_name = a_name)
209
- a_list.append(a_name)
210
- w_list.append(v)
211
- if not a_list: return pipe
212
- pipe.set_adapters(a_list, adapter_weights=w_list)
213
- pipe.fuse_lora(adapter_names=a_list, lora_scale=1.0)
214
- pipe.unload_lora_weights()
215
- return pipe
216
-
217
-
218
- def convert_url_to_diffusers_sdxl(url, civitai_key="", half=True, vae=None, scheduler="Euler a", lora_dict={}):
219
- temp_dir = "."
220
- new_file = get_download_file(temp_dir, url, civitai_key)
221
- if not new_file:
222
- print(f"Not found: {url}")
223
- return
224
- new_repo_name = Path(new_file).stem.replace(" ", "_").replace(",", "_").replace(".", "_") #
225
-
226
- pipe = None
227
- if is_repo_name(url):
228
- if half:
229
- pipe = StableDiffusionXLPipeline.from_pretrained(new_file, use_safetensors=True, torch_dtype=torch.float16)
230
- else:
231
- pipe = StableDiffusionXLPipeline.from_pretrained(new_file, use_safetensors=True)
232
- else:
233
- if half:
234
- pipe = StableDiffusionXLPipeline.from_single_file(new_file, use_safetensors=True, torch_dtype=torch.float16)
235
- else:
236
- pipe = StableDiffusionXLPipeline.from_single_file(new_file, use_safetensors=True)
237
-
238
- new_vae_file = ""
239
- if vae:
240
- if is_repo_name(vae):
241
- if half:
242
- pipe.vae = AutoencoderKL.from_pretrained(vae, torch_dtype=torch.float16)
243
- else:
244
- pipe.vae = AutoencoderKL.from_pretrained(vae)
245
- else:
246
- new_vae_file = get_download_file(temp_dir, vae, civitai_key)
247
- if new_vae_file and half:
248
- pipe.vae = AutoencoderKL.from_single_file(new_vae_file, torch_dtype=torch.float16)
249
- elif new_vae_file:
250
- pipe.vae = AutoencoderKL.from_single_file(new_vae_file)
251
-
252
- pipe = fuse_loras(pipe, lora_dict, temp_dir, civitai_key)
253
-
254
- sconf = get_scheduler_config(scheduler)
255
- pipe.scheduler = sconf[0].from_config(pipe.scheduler.config, **sconf[1])
256
-
257
- if half:
258
- pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
259
- else:
260
- pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
261
-
262
- if Path(new_repo_name).exists():
263
- save_readme_md(new_repo_name, url)
264
-
265
-
266
- if __name__ == "__main__":
267
- parser = argparse.ArgumentParser()
268
-
269
- parser.add_argument("--url", default=None, type=str, required=True, help="URL of the model to convert.")
270
- parser.add_argument("--half", default=True, help="Save weights in half precision.")
271
- parser.add_argument("--scheduler", default="Euler a", type=str, choices=list(SCHEDULER_CONFIG_MAP.keys()), required=False, help="Scheduler name to use.")
272
- parser.add_argument("--vae", default=None, type=str, required=False, help="URL of the VAE to use.")
273
- parser.add_argument("--civitai_key", default=None, type=str, required=False, help="Civitai API Key (If you want to download file from Civitai).")
274
- parser.add_argument("--lora1", default=None, type=str, required=False, help="URL of the LoRA to use.")
275
- parser.add_argument("--lora1s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora1.")
276
- parser.add_argument("--lora2", default=None, type=str, required=False, help="URL of the LoRA to use.")
277
- parser.add_argument("--lora2s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora2.")
278
- parser.add_argument("--lora3", default=None, type=str, required=False, help="URL of the LoRA to use.")
279
- parser.add_argument("--lora3s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora3.")
280
- parser.add_argument("--lora4", default=None, type=str, required=False, help="URL of the LoRA to use.")
281
- parser.add_argument("--lora4s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora4.")
282
- parser.add_argument("--lora5", default=None, type=str, required=False, help="URL of the LoRA to use.")
283
- parser.add_argument("--lora5s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora5.")
284
- parser.add_argument("--loras", default=None, type=str, required=False, help="Folder of the LoRA to use.")
285
-
286
- args = parser.parse_args()
287
- assert args.url is not None, "Must provide a URL!"
288
-
289
- lora_dict = {args.lora1: args.lora1s, args.lora2: args.lora2s, args.lora3: args.lora3s, args.lora4: args.lora4s, args.lora5: args.lora5s}
290
-
291
- if args.loras and Path(args.loras).exists():
292
- for p in Path(args.loras).glob('**/*.safetensors'):
293
- lora_dict[str(p)] = 1.0
294
-
295
- convert_url_to_diffusers_sdxl(args.url, args.civitai_key, args.half, args.vae, args.scheduler, lora_dict)
296
-
297
-
298
- # Usage: python convert_url_to_diffusers_sdxl.py --url https://huggingface.co/bluepen5805/anima_pencil-XL/blob/main/anima_pencil-XL-v5.0.0.safetensors
299
- # python convert_url_to_diffusers_sdxl.py --url https://huggingface.co/bluepen5805/anima_pencil-XL/blob/main/anima_pencil-XL-v5.0.0.safetensors --scheduler "Euler a"
300
- # python convert_url_to_diffusers_sdxl.py --url https://huggingface.co/bluepen5805/anima_pencil-XL/blob/main/anima_pencil-XL-v5.0.0.safetensors --loras ./loras