Spaces:
Runtime error
Runtime error
File size: 4,282 Bytes
624b44d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
from transformers import AutoTokenizer, AutoModelForCausalLM, StoppingCriteria
from peft import PeftModel
import torch
import gradio as gr
import os
import re
class ChineseCharacterStop(StoppingCriteria):
def __init__(self, chars: list[str]):
self.chars = [
tokenizer(i, add_special_tokens=False, return_tensors='pt').input_ids
for i in chars
]
# for chars, tokens in zip(chars, self.chars):
# print(f"'{chars}':{tokens}")
def __call__(self, input_ids: torch.LongTensor,
scores: torch.FloatTensor, **kwargs) -> bool:
for c in self.chars:
c = c.to(input_ids.device)
match = torch.eq(input_ids[..., -c.shape[1]:], c)
if torch.any(torch.all(match, dim=1)):
return True
return False
tokenizer = AutoTokenizer.from_pretrained("IDEA-CCNL/Wenzhong-GPT2-110M")
tokenizer.pad_token = tokenizer.eos_token
gpt2_model = AutoModelForCausalLM.from_pretrained("IDEA-CCNL/Wenzhong-GPT2-110M")
model = PeftModel.from_pretrained(gpt2_model, 'checkpoint_lora_v4.1')
def cang_tou(tou: str):
poem_now = "写一首唐诗:"
for c in tou:
poem_now += c
print(poem_now)
inputs = tokenizer(poem_now, return_tensors='pt')
outputs = model.generate(
**inputs,
return_dict_in_generate=True,
max_length=150,
do_sample=True,
top_p=0.4,
num_beams=1,
num_return_sequences=1,
stopping_criteria=[ChineseCharacterStop(['。', ','])],
pad_token_id=tokenizer.pad_token_id
)
poem_now = tokenizer.batch_decode(outputs.sequences, skip_special_tokens=True)[0]
print(poem_now)
return poem_now[6:]
def prompt_gen(prompt):
inputs = tokenizer(prompt, return_tensors='pt')
outputs = model.generate(
**inputs,
return_dict_in_generate=True,
max_length=200,
do_sample=True,
top_p=0.8,
num_beams=5,
num_return_sequences=3,
# stopping_criteria=[ChineseCharacterStop(['。', ',', ''])],
pad_token_id=tokenizer.pad_token_id
)
res = ''
for line in tokenizer.batch_decode(outputs.sequences, skip_special_tokens=True):
line = line[len(prompt):]
res = res+line+'\n'
return res
css = """
#col-container {max-width: 510px; margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
.animate-spin {
animation: spin 1s linear infinite;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
"""
<h1 style="text-align: center;">✨古诗生成</h1>
<p style="text-align: center;">
根据输入的提示生成古诗、藏头诗<br />
</p>
"""
)
with gr.Tab("提示"):
prompt_in = gr.Textbox(label="Prompt", placeholder="写一首关于思乡的古诗:", elem_id="prompt-in")
#neg_prompt = gr.Textbox(label="Negative prompt", value="text, watermark, copyright, blurry, nsfw", elem_id="neg-prompt-in")
#inference_steps = gr.Slider(label="Inference Steps", minimum=10, maximum=100, step=1, value=40, interactive=False)
submit_btn = gr.Button("Submit")
poetry_result = gr.Textbox(label="Output", elem_id="poetry-output")
submit_btn.click(fn=prompt_gen,
inputs=[prompt_in],
outputs=[poetry_result])
with gr.Tab("藏头诗"):
tou_in = gr.Textbox(label="Prompt", placeholder="一见如故", elem_id="tou-in")
#neg_prompt = gr.Textbox(label="Negative prompt", value="text, watermark, copyright, blurry, nsfw", elem_id="neg-prompt-in")
#inference_steps = gr.Slider(label="Inference Steps", minimum=10, maximum=100, step=1, value=40, interactive=False)
submit_btn = gr.Button("Submit")
cangtou_result = gr.Textbox(label="Output", elem_id="cangtou-output")
submit_btn.click(fn=cang_tou,
inputs=[tou_in],
outputs=[cangtou_result])
demo.queue(max_size=12).launch() |