Spaces:
Running
Running
File size: 30,429 Bytes
1203483 5eb0b04 1203483 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 |
from flask import Flask, render_template, request, redirect, url_for, session
import os
from werkzeug.utils import secure_filename
#from retrival import generate_data_store
from retrival import generate_data_store #,add_document_to_existing_db, delete_chunks_by_source
from langchain_community.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.prompts import ChatPromptTemplate
from langchain_core.prompts import PromptTemplate, ChatPromptTemplate
from langchain_huggingface import HuggingFaceEndpoint
from huggingface_hub import InferenceClient
from langchain.schema import Document
from langchain_core.documents import Document
from dotenv import load_dotenv
import re
import glob
import shutil
from werkzeug.utils import secure_filename
import asyncio
import nltk
nltk.download('punkt_tab')
import nltk
nltk.download('averaged_perceptron_tagger_eng')
app = Flask(__name__)
# Set the secret key for session management
app.secret_key = os.urandom(24)
# Configurations
UPLOAD_FOLDER = "uploads/"
VECTOR_DB_FOLDER = "VectorDB/"
#TABLE_DB_FOLDER = "TableDB/"
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.makedirs(VECTOR_DB_FOLDER, exist_ok=True)
#os.makedirs(TABLE_DB_FOLDER, exist_ok=True)
# Global variables
CHROMA_PATH = None
TEMP_PATH = None
#TABLE_PATH = None
#System prompt
'''PROMPT_TEMPLATE = """
You are working with a retrieval-augmented generation (RAG) setup. Your task is to generate a response based on the context provided and the question asked. Consider only the following context strictly, and use it to answer the question. If the question cannot be answered using the context, respond with: "The information requested is not mentioned in the context."
Context:
{context}
---
Question:
{question}
Response:
"""
'''
PROMPT_TEMPLATE = """
You are working as a retrieval-augmented generation (RAG) assistant specializing in providing precise and accurate responses. Generate a response based only on the provided context and question, following these concrete instructions:
- **Adhere strictly to the context:** Use only the information in the context to answer the question. Do not add any external details or assumptions.
- **Handle multiple chunks:** The context is divided into chunks, separated by "###". Query-related information may be present in any chunk.
- **Focus on relevance:** Identify and prioritize chunks relevant to the question while ignoring unrelated chunks.
- **Answer concisely and factually:** Provide clear, direct, and structured responses based on the retrieved information.
Context:
{context}
---
Question:
{question}
Response:
"""
#HFT = os.getenv('HF_TOKEN')
#client = InferenceClient(api_key=HFT)
@app.route('/', methods=['GET'])
def home():
return render_template('home.html')
@app.route('/chat', methods=['GET', 'POST'])
def chat():
if 'history' not in session:
session['history'] = []
print("sessionhist1",session['history'])
global CHROMA_PATH
#global TABLE_PATH
#old_db = session.get('old_db', None)
#print(f"Selected DB: {CHROMA_PATH}")
#if TEMP_PATH is not None and TEMP_PATH != CHROMA_PATH:
# session['history'] = []
#TEMP_PATH = CHROMA_PATH
if request.method == 'POST':
query_text = request.form['query_text']
if CHROMA_PATH is None:
return render_template('chat.html', error="No vector database selected!", history=[])
# Load the selected Document Database
embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
#embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
results_document = db.similarity_search_with_relevance_scores(query_text, k=3)
print("results------------------->",results_document)
context_text_document = "\n\n---\n\n".join([doc.page_content for doc, _score in results_document])
# # Load the selected Table Database
# #embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
# embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
# tdb = Chroma(persist_directory=TABLE_PATH, embedding_function=embedding_function)
# results_table = tdb.similarity_search_with_relevance_scores(query_text, k=2)
# print("results------------------->",results_table)
# context_text_table = "\n\n---\n\n".join([doc.page_content for doc, _score in results_table])
# Prepare the prompt and query the model
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
prompt = prompt_template.format(context=context_text_document,question=query_text)
#prompt = prompt_template.format(context=context_text_document,table=context_text_table, question=query_text)
print("results------------------->",prompt)
#Model Defining and its use
repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
HFT = os.environ["HF_TOKEN"]
llm = HuggingFaceEndpoint(
repo_id=repo_id,
max_tokens=3000,
temperature=0.8,
huggingfacehub_api_token=HFT,
)
data= llm(prompt)
#data = response.choices[0].message.content
print("LLM response------------------>",data)
# filtering the uneccessary context.
if re.search(r'\bmention\b|\bnot mention\b|\bnot mentioned\b|\bnot contain\b|\bnot include\b|\bnot provide\b|\bdoes not\b|\bnot explicitly\b|\bnot explicitly mentioned\b', data, re.IGNORECASE):
data = "We do not have information related to your query on our end."
# Save the query and answer to the session history
session['history'].append((query_text, data))
# Mark the session as modified to ensure it gets saved
session.modified = True
print("sessionhist2",session['history'])
return render_template('chat.html', query_text=query_text, answer=data, history=session['history'])
return render_template('chat.html', history=session['history'])
'''
@app.route('/create-db', methods=['GET', 'POST'])
def create_db():
if request.method == 'POST':
db_name = request.form['db_name']
# Get all files from the uploaded folder
files = request.files.getlist('folder')
if not files:
return "No files uploaded", 400
# if not exist
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
# Define the base upload path
upload_base_path = os.path.join(app.config['UPLOAD_FOLDER'], secure_filename(db_name))
#upload_base_path = upload_base_path.replace("\\", "/")
print(f"Base Upload Path: {upload_base_path}")
os.makedirs(upload_base_path, exist_ok=True)
# Save each file and recreate folder structure
for file in files:
print("file , files",files,file)
#relative_path = file.filename # This should contain the subfolder structure
file_path = os.path.join(upload_base_path)
#file_path = file_path.replace("\\", "/")
# Ensure the directory exists before saving the file
print(f"Saving to: {file_path}")
os.makedirs(os.path.dirname(file_path), exist_ok=True)
# Get the file path and save it
file_path = os.path.join(upload_base_path, secure_filename(file.filename))
file.save(file_path)
# Generate datastore
generate_data_store(upload_base_path, db_name)
# # Clean up uploaded files (if needed)
#if os.path.exists(app.config['UPLOAD_FOLDER']):
# shutil.rmtree(app.config['UPLOAD_FOLDER'])
return redirect(url_for('list_dbs'))
return render_template('create_db.html')
'''
@app.route('/create-db', methods=['GET', 'POST'])
def create_db():
if request.method == 'POST':
db_name = request.form['db_name']
# Ensure the upload folder exists
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
# Define the base upload path
upload_base_path = os.path.join(app.config['UPLOAD_FOLDER'], secure_filename(db_name))
os.makedirs(upload_base_path, exist_ok=True)
# Check for uploaded folder or files
folder_files = request.files.getlist('folder')
single_files = request.files.getlist('file')
if folder_files and any(file.filename for file in folder_files):
# Process folder files
for file in folder_files:
file_path = os.path.join(upload_base_path, secure_filename(file.filename))
os.makedirs(os.path.dirname(file_path), exist_ok=True)
file.save(file_path)
elif single_files and any(file.filename for file in single_files):
# Process single files
for file in single_files:
file_path = os.path.join(upload_base_path, secure_filename(file.filename))
file.save(file_path)
else:
return "No files uploaded", 400
# Generate datastore
generate_data_store(upload_base_path, db_name)
return redirect(url_for('list_dbs'))
return render_template('create_db.html')
@app.route('/list-dbs', methods=['GET'])
def list_dbs():
vector_dbs = [name for name in os.listdir(VECTOR_DB_FOLDER) if os.path.isdir(os.path.join(VECTOR_DB_FOLDER, name))]
return render_template('list_dbs.html', vector_dbs=vector_dbs)
@app.route('/select-db/<db_name>', methods=['POST'])
def select_db(db_name):
#Selecting the Documnet Vector DB
global CHROMA_PATH
print(f"Selected DB: {CHROMA_PATH}")
CHROMA_PATH = os.path.join(VECTOR_DB_FOLDER, db_name)
CHROMA_PATH = CHROMA_PATH.replace("\\", "/")
print(f"Selected DB: {CHROMA_PATH}")
#Selecting the Table Vector DB
# global TABLE_PATH
# print(f"Selected DB: {TABLE_PATH}")
# TABLE_PATH = os.path.join(TABLE_DB_FOLDER, db_name)
# TABLE_PATH = TABLE_PATH.replace("\\", "/")
# print(f"Selected DB: {TABLE_PATH}")
return redirect(url_for('chat'))
@app.route('/update-dbs/<db_name>', methods=['GET','POST'])
def update_db(db_name):
if request.method == 'POST':
db_name = request.form['db_name']
# Get all files from the uploaded folder
files = request.files.getlist('folder')
if not files:
return "No files uploaded", 400
print(f"Selected DB: {db_name}")
DB_PATH = os.path.join(VECTOR_DB_FOLDER, db_name)
DB_PATH = DB_PATH.replace("\\", "/")
print(f"Selected DB: {DB_PATH}")
generate_data_store(DB_PATH, db_name)
return redirect(url_for('list_dbs'))
return render_template('update_db.html')
if __name__ == "__main__":
app.run(debug=False, use_reloader=False)
RETRIVAL PY
from langchain_community.document_loaders import DirectoryLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document
from langchain_core.documents import Document
from langchain_community.vectorstores import Chroma
import os
import shutil
import asyncio
from unstructured.partition.pdf import partition_pdf
from unstructured.partition.auto import partition
import pytesseract
import os
import re
import uuid
from collections import defaultdict
pytesseract.pytesseract.tesseract_cmd = (r'/usr/bin/tesseract')
# Configurations
UPLOAD_FOLDER = "./uploads"
VECTOR_DB_FOLDER = "./VectorDB"
IMAGE_DB_FOLDER = "./Images"
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.makedirs(VECTOR_DB_FOLDER, exist_ok=True)
########################################################################################################################################################
####-------------------------------------------------------------- Documnet Loader ---------------------------------------------------------------####
########################################################################################################################################################
# Loaders for loading Document text, tables and images from any file format.
#data_path=r"H:\DEV PATEL\2025\RAG Project\test_data\google data"
def load_document(data_path):
processed_documents = []
element_content = []
table_document = []
#having different process for the pdf
for root, _, files in os.walk(data_path):
for file in files:
file_path = os.path.join(root, file)
doc_id = str(uuid.uuid4()) # Generate a unique ID for the document
print(f"Processing document ID: {doc_id}, Path: {file_path}")
try:
# Determine the file type based on extension
filename, file_extension = os.path.splitext(file.lower())
image_output = f"./Images/{filename}/"
# Use specific partition techniques based on file extension
if file_extension == ".pdf":
elements = partition_pdf(
filename=file_path,
strategy="hi_res", # Use layout detection
infer_table_structure=True,
hi_res_model_name="yolox",
extract_images_in_pdf=True,
extract_image_block_types=["Image","Table"],
extract_image_block_output_dir=image_output,
show_progress=True,
#chunking_strategy="by_title",
)
else:
# Default to auto partition if no specific handler is found
elements = partition(
filename=file_path,
strategy="hi_res",
infer_table_structure=True,
show_progress=True,
#chunking_strategy="by_title"
)
except Exception as e:
print(f"Failed to process document {file_path}: {e}")
continue
categorized_content = {
"tables": {"content": [], "Metadata": []},
"images": {"content": [], "Metadata": []},
"text": {"content": [], "Metadata": []},
"text2": {"content": [], "Metadata": []}
}
element_content.append(elements)
CNT=1
for chunk in elements:
# Safely extract metadata and text
chunk_type = str(type(chunk))
chunk_metadata = chunk.metadata.to_dict() if chunk.metadata else {}
chunk_text = getattr(chunk, "text", None)
# Separate content into categories
#if "Table" in chunk_type:
if any(
keyword in chunk_type
for keyword in [
"Table",
"TableChunk"]):
categorized_content["tables"]["content"].append(chunk_text)
categorized_content["tables"]["Metadata"].append(chunk_metadata)
#test1
TABLE_DATA=f"Table number {CNT} "+chunk_metadata.get("text_as_html", "")+" "
CNT+=1
categorized_content["text"]["content"].append(TABLE_DATA)
categorized_content["text"]["Metadata"].append(chunk_metadata)
elif "Image" in chunk_type:
categorized_content["images"]["content"].append(chunk_text)
categorized_content["images"]["Metadata"].append(chunk_metadata)
elif any(
keyword in chunk_type
for keyword in [
"CompositeElement",
"Text",
"NarrativeText",
"Title",
"Header",
"Footer",
"FigureCaption",
"ListItem",
"UncategorizedText",
"Formula",
"CodeSnippet",
"Address",
"EmailAddress",
"PageBreak",
]
):
categorized_content["text"]["content"].append(chunk_text)
categorized_content["text"]["Metadata"].append(chunk_metadata)
else:
continue
# Append processed document
processed_documents.append({
"doc_id": doc_id,
"source": file_path,
**categorized_content,
})
# Loop over tables and match text from the same document and page
'''
for doc in processed_documents:
cnt=1 # count for storing number of the table
for table_metadata in doc.get("tables", {}).get("Metadata", []):
page_number = table_metadata.get("page_number")
source = doc.get("source")
page_content = ""
for text_metadata, text_content in zip(
doc.get("text", {}).get("Metadata", []),
doc.get("text", {}).get("content", [])
):
page_number2 = text_metadata.get("page_number")
source2 = doc.get("source")
if source == source2 and page_number == page_number2:
print(f"Matching text found for source: {source}, page: {page_number}")
page_content += f"{text_content} " # Concatenate text with a space
# Add the matched content to the table metadata
table_metadata["page_content"] =f"Table number {cnt} "+table_metadata.get("text_as_html", "")+" "+page_content.strip() # Remove trailing spaces and have the content proper here
table_metadata["text_as_html"] = table_metadata.get("text_as_html", "") # we are also storing it seperatly
table_metadata["Table_number"] = cnt # addiing the table number it will be use in retrival
cnt+=1
# Custom loader of document which will store the table along with the text on that page specifically
# making document of each table with its content
unique_id = str(uuid.uuid4())
table_document.append(
Document(
id =unique_id, # Add doc_id directly
page_content=table_metadata.get("page_content", ""), # Get page_content from metadata, default to empty string if missing
metadata={
"source": doc["source"],
"text_as_html": table_metadata.get("text_as_html", ""),
"filetype": table_metadata.get("filetype", ""),
"page_number": str(table_metadata.get("page_number", 0)), # Default to 0 if missing
"image_path": table_metadata.get("image_path", ""),
"file_directory": table_metadata.get("file_directory", ""),
"filename": table_metadata.get("filename", ""),
"Table_number": str(table_metadata.get("Table_number", 0)) # Default to 0 if missing
}
)
)
'''
# Initialize a structure to group content by doc_id
grouped_by_doc_id = defaultdict(lambda: {
"text_content": [],
"metadata": None, # Metadata will only be set once per doc_id
})
for doc in processed_documents:
doc_id = doc.get("doc_id")
source = doc.get("source")
text_content = doc.get("text", {}).get("content", [])
metadata_list = doc.get("text", {}).get("Metadata", [])
# Merge text content
grouped_by_doc_id[doc_id]["text_content"].extend(text_content)
# Set metadata (if not already set)
if grouped_by_doc_id[doc_id]["metadata"] is None and metadata_list:
metadata = metadata_list[0] # Assuming metadata is consistent
grouped_by_doc_id[doc_id]["metadata"] = {
"source": source,
"filetype": metadata.get("filetype"),
"file_directory": metadata.get("file_directory"),
"filename": metadata.get("filename"),
"languages": str(metadata.get("languages")),
}
# Convert grouped content into Document objects
grouped_documents = []
for doc_id, data in grouped_by_doc_id.items():
grouped_documents.append(
Document(
id=doc_id,
page_content=" ".join(data["text_content"]).strip(),
metadata=data["metadata"],
)
)
# Output the grouped documents
for document in grouped_documents:
print(document)
#Dirctory loader for loading the text data only to specific db
'''
loader = DirectoryLoader(data_path, glob="*.*")
documents = loader.load()
# update the metadata adding filname to the met
for doc in documents:
unique_id = str(uuid.uuid4())
doc.id = unique_id
path=doc.metadata.get("source")
match = re.search(r'([^\\]+\.[^\\]+)$', path)
doc.metadata.update({"filename":match.group(1)})
return documents,
'''
return grouped_documents
#documents,processed_documents,table_document = load_document(data_path)
########################################################################################################################################################
####-------------------------------------------------------------- Chunking the Text --------------------------------------------------------------####
########################################################################################################################################################
def split_text(documents: list[Document]):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=500,
length_function=len,
add_start_index=True,
)
chunks = text_splitter.split_documents(documents) # splitting the document into chunks
for index in chunks:
index.metadata["start_index"]=str(index.metadata["start_index"]) # the converstion of int metadata to str was done to store it in sqlite3
print(f"Split {len(documents)} documents into {len(chunks)} chunks.")
return chunks
########################################################################################################################################################
####---------------------------------------------------- Creating and Storeing Data in Vector DB --------------------------------------------------####
########################################################################################################################################################
#def save_to_chroma(chunks: list[Document], name: str, tables: list[Document]):
def save_to_chroma(chunks: list[Document], name: str):
CHROMA_PATH = f"./VectorDB/chroma_{name}"
#TABLE_PATH = f"./TableDB/chroma_{name}"
if os.path.exists(CHROMA_PATH):
shutil.rmtree(CHROMA_PATH)
# if os.path.exists(TABLE_PATH):
# shutil.rmtree(TABLE_PATH)
try:
# Load the embedding model
embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
#embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
# Create Chroma DB for documents using from_documents [NOTE: Some of the data is converted to string because int and float show null if added]
print("Creating document vector database...")
db = Chroma.from_documents(
documents=chunks,
embedding=embedding_function,
persist_directory=CHROMA_PATH,
)
print("Document database successfully saved.")
# # Create Chroma DB for tables if available [NOTE: Some of the data is converted to string because int and float show null if added]
# if tables:
# print("Creating table vector database...")
# tdb = Chroma.from_documents(
# documents=tables,
# embedding=embedding_function,
# persist_directory=TABLE_PATH,
# )
# print("Table database successfully saved.")
# else:
# tdb = None
#return db, tdb
return db
except Exception as e:
print("Error while saving to Chroma:", e)
return None
# def get_unique_sources(chroma_path):
# db = Chroma(persist_directory=chroma_path)
# metadata_list = db.get()["metadatas"]
# unique_sources = {metadata["source"] for metadata in metadata_list if "source" in metadata}
# return list(unique_sources)
########################################################################################################################################################
####----------------------------------------------------------- Updating Existing Data in Vector DB -----------------------------------------------####
########################################################################################################################################################
# def add_document_to_existing_db(new_documents: list[Document], db_name: str):
# CHROMA_PATH = f"./VectorDB/chroma_{db_name}"
# if not os.path.exists(CHROMA_PATH):
# print(f"Database '{db_name}' does not exist. Please create it first.")
# return
# try:
# embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
# #embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
# db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
# print("Adding new documents to the existing database...")
# chunks = split_text(new_documents)
# db.add_documents(chunks)
# db.persist()
# print("New documents added and database updated successfully.")
# except Exception as e:
# print("Error while adding documents to existing database:", e)
# def delete_chunks_by_source(chroma_path, source_to_delete):
# if not os.path.exists(chroma_path):
# print(f"Database at path '{chroma_path}' does not exist.")
# return
# try:
# #embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
# embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
# db = Chroma(persist_directory=chroma_path, embedding_function=embedding_function)
# print(f"Retrieving all metadata to identify chunks with source '{source_to_delete}'...")
# metadata_list = db.get()["metadatas"]
# # Identify indices of chunks to delete
# indices_to_delete = [
# idx for idx, metadata in enumerate(metadata_list) if metadata.get("source") == source_to_delete
# ]
# if not indices_to_delete:
# print(f"No chunks found with source '{source_to_delete}'.")
# return
# print(f"Deleting {len(indices_to_delete)} chunks with source '{source_to_delete}'...")
# db.delete(indices=indices_to_delete)
# db.persist()
# print("Chunks deleted and database updated successfully.")
# except Exception as e:
# print(f"Error while deleting chunks by source: {e}")
# # update a data store
# def update_data_store(file_path, db_name):
# CHROMA_PATH = f"./VectorDB/chroma_{db_name}"
# print(f"Filepath ===> {file_path} DB Name ====> {db_name}")
# try:
# documents,table_document = load_document(file_path)
# print("Documents loaded successfully.")
# except Exception as e:
# print(f"Error loading documents: {e}")
# return
# try:
# chunks = split_text(documents)
# print(f"Text split into {len(chunks)} chunks.")
# except Exception as e:
# print(f"Error splitting text: {e}")
# return
# try:
# asyncio.run(save_to_chroma(save_to_chroma(chunks, db_name, table_document)))
# print(f"Data saved to Chroma for database {db_name}.")
# except Exception as e:
# print(f"Error saving to Chroma: {e}")
# return
########################################################################################################################################################
####------------------------------------------------------- Combine Process of Load, Chunk and Store ----------------------------------------------####
########################################################################################################################################################
def generate_data_store(file_path, db_name):
CHROMA_PATH = f"./VectorDB/chroma_{db_name}"
print(f"Filepath ===> {file_path} DB Name ====> {db_name}")
try:
#documents,grouped_documents = load_document(file_path)
grouped_documents = load_document(file_path)
print("Documents loaded successfully.")
except Exception as e:
print(f"Error loading documents: {e}")
return
try:
chunks = split_text(grouped_documents)
print(f"Text split into {len(chunks)} chunks.")
except Exception as e:
print(f"Error splitting text: {e}")
return
try:
#asyncio.run(save_to_chroma(save_to_chroma(chunks, db_name, table_document)))
asyncio.run(save_to_chroma(chunks, db_name))
print(f"Data saved to Chroma for database {db_name}.")
except Exception as e:
print(f"Error saving to Chroma: {e}")
return
|