Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -48,6 +48,8 @@ UPLOAD_FOLDER = "uploads/"
|
|
| 48 |
DATA_FOLDER = "data/"
|
| 49 |
MODEL_FOLDER = "models/"
|
| 50 |
|
|
|
|
|
|
|
| 51 |
# Define the model directory and label encoder directory
|
| 52 |
MODEL_DIR = r'./Model'
|
| 53 |
LABEL_ENCODER_DIR = r'./Label_encoders' # Renamed for clarity
|
|
@@ -77,37 +79,44 @@ os.makedirs(app.config['MODEL_FOLDER'], exist_ok=True)
|
|
| 77 |
# ------------------------------
|
| 78 |
|
| 79 |
# Prediction analysis models loaded from Hugging Face.
|
| 80 |
-
|
| 81 |
repo_id="WebashalarForML/Diamond_model_",
|
| 82 |
filename="models_list/mkble/StackingRegressor_best_pipeline_mkble_0_to_1.01.pkl",
|
| 83 |
cache_dir=MODEL_FOLDER
|
| 84 |
)
|
| 85 |
-
|
| 86 |
-
|
|
|
|
| 87 |
|
| 88 |
-
|
| 89 |
repo_id="WebashalarForML/Diamond_model_",
|
| 90 |
filename="models_list/grd/StackingRegressor_best_pipeline_grd_0_to_1.01.pkl",
|
| 91 |
cache_dir=MODEL_FOLDER
|
| 92 |
)
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
| 95 |
|
| 96 |
-
|
| 97 |
repo_id="WebashalarForML/Diamond_model_",
|
| 98 |
filename="models_list/bygrad/StackingRegressor_best_pipeline_bygrad_0_to_1.01.pkl",
|
| 99 |
cache_dir=MODEL_FOLDER
|
| 100 |
)
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
| 103 |
|
| 104 |
-
|
| 105 |
repo_id="WebashalarForML/Diamond_model_",
|
| 106 |
filename="models_list/gia/StackingRegressor_best_pipeline_gia_0_to_1.01.pkl",
|
| 107 |
cache_dir=MODEL_FOLDER
|
| 108 |
)
|
| 109 |
-
|
| 110 |
-
|
|
|
|
|
|
|
| 111 |
|
| 112 |
|
| 113 |
print("makable_model type:", type(makable_model))
|
|
@@ -115,10 +124,10 @@ print("grade_model type:", type(grade_model))
|
|
| 115 |
print("bygrade_model type:", type(bygrade_model))
|
| 116 |
print("gia_model type:", type(gia_model))
|
| 117 |
|
| 118 |
-
gia_model = load("models/StackingRegressor_best_pipeline_mkble_0_to_1.01.pkl")
|
| 119 |
-
grade_model = load("models/StackingRegressor_best_pipeline_grd_0_to_1.01.pkl")
|
| 120 |
-
bygrade_model = load("models/StackingRegressor_best_pipeline_bygrad_0_to_1.01.pkl")
|
| 121 |
-
makable_model = load("models/StackingRegressor_best_pipeline_gia_0_to_1.01.pkl")
|
| 122 |
|
| 123 |
|
| 124 |
# Classification models loaded using joblib.
|
|
|
|
| 48 |
DATA_FOLDER = "data/"
|
| 49 |
MODEL_FOLDER = "models/"
|
| 50 |
|
| 51 |
+
os.makedirs(MODEL_FOLDER, exist_ok=True)
|
| 52 |
+
|
| 53 |
# Define the model directory and label encoder directory
|
| 54 |
MODEL_DIR = r'./Model'
|
| 55 |
LABEL_ENCODER_DIR = r'./Label_encoders' # Renamed for clarity
|
|
|
|
| 79 |
# ------------------------------
|
| 80 |
|
| 81 |
# Prediction analysis models loaded from Hugging Face.
|
| 82 |
+
src_path = hf_hub_download(
|
| 83 |
repo_id="WebashalarForML/Diamond_model_",
|
| 84 |
filename="models_list/mkble/StackingRegressor_best_pipeline_mkble_0_to_1.01.pkl",
|
| 85 |
cache_dir=MODEL_FOLDER
|
| 86 |
)
|
| 87 |
+
dst_path = os.path.join(MODEL_FOLDER, "StackingRegressor_best_pipeline_mkble_0_to_1.01.pkl")
|
| 88 |
+
shutil.copy(src_path, dst_path)
|
| 89 |
+
makable_model = load(dst_path)
|
| 90 |
|
| 91 |
+
src_path = hf_hub_download(
|
| 92 |
repo_id="WebashalarForML/Diamond_model_",
|
| 93 |
filename="models_list/grd/StackingRegressor_best_pipeline_grd_0_to_1.01.pkl",
|
| 94 |
cache_dir=MODEL_FOLDER
|
| 95 |
)
|
| 96 |
+
dst_path = os.path.join(MODEL_FOLDER, "StackingRegressor_best_pipeline_grd_0_to_1.01.pkl")
|
| 97 |
+
shutil.copy(src_path, dst_path)
|
| 98 |
+
grade_model = load(dst_path)
|
| 99 |
+
|
| 100 |
|
| 101 |
+
src_path = hf_hub_download(
|
| 102 |
repo_id="WebashalarForML/Diamond_model_",
|
| 103 |
filename="models_list/bygrad/StackingRegressor_best_pipeline_bygrad_0_to_1.01.pkl",
|
| 104 |
cache_dir=MODEL_FOLDER
|
| 105 |
)
|
| 106 |
+
dst_path = os.path.join(MODEL_FOLDER, "StackingRegressor_best_pipeline_bygrad_0_to_1.01.pkl")
|
| 107 |
+
shutil.copy(src_path, dst_path)
|
| 108 |
+
bygrade_model = load(dst_path)
|
| 109 |
+
|
| 110 |
|
| 111 |
+
src_path = hf_hub_download(
|
| 112 |
repo_id="WebashalarForML/Diamond_model_",
|
| 113 |
filename="models_list/gia/StackingRegressor_best_pipeline_gia_0_to_1.01.pkl",
|
| 114 |
cache_dir=MODEL_FOLDER
|
| 115 |
)
|
| 116 |
+
dst_path = os.path.join(MODEL_FOLDER, "StackingRegressor_best_pipeline_gia_0_to_1.01.pkl")
|
| 117 |
+
shutil.copy(src_path, dst_path)
|
| 118 |
+
gia_model = load(dst_path)
|
| 119 |
+
|
| 120 |
|
| 121 |
|
| 122 |
print("makable_model type:", type(makable_model))
|
|
|
|
| 124 |
print("bygrade_model type:", type(bygrade_model))
|
| 125 |
print("gia_model type:", type(gia_model))
|
| 126 |
|
| 127 |
+
#gia_model = load("models/StackingRegressor_best_pipeline_mkble_0_to_1.01.pkl")
|
| 128 |
+
#grade_model = load("models/StackingRegressor_best_pipeline_grd_0_to_1.01.pkl")
|
| 129 |
+
#bygrade_model = load("models/StackingRegressor_best_pipeline_bygrad_0_to_1.01.pkl")
|
| 130 |
+
#makable_model = load("models/StackingRegressor_best_pipeline_gia_0_to_1.01.pkl")
|
| 131 |
|
| 132 |
|
| 133 |
# Classification models loaded using joblib.
|