Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -146,6 +146,7 @@ print("mkble_amt_class_model type:", type(mkble_amt_class_model))
|
|
| 146 |
|
| 147 |
|
| 148 |
# Classification models loaded using joblib.
|
|
|
|
| 149 |
col_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_col.joblib'))
|
| 150 |
cts_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cts.joblib'))
|
| 151 |
cut_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cut.joblib'))
|
|
@@ -168,6 +169,8 @@ blk_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegr
|
|
| 168 |
wht_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_wht.joblib'))
|
| 169 |
open_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_open.joblib'))
|
| 170 |
pav_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_pav.joblib'))
|
|
|
|
|
|
|
| 171 |
|
| 172 |
# List of label encoder names.
|
| 173 |
encoder_list = [
|
|
@@ -322,6 +325,7 @@ def process_dataframe(df):
|
|
| 322 |
# -------------------------
|
| 323 |
# Classification Report Section
|
| 324 |
# -------------------------
|
|
|
|
| 325 |
try:
|
| 326 |
x2 = df_class.copy()
|
| 327 |
dx = df_pred.copy() # Start with the prediction data.
|
|
@@ -375,9 +379,11 @@ def process_dataframe(df):
|
|
| 375 |
dx['Change_Wht_Eng_to_Gia_value'] = loaded_label_encoder['Change_Wht_Eng_to_Gia_value'].inverse_transform(dx['Change_Wht_Eng_to_Gia_value'])
|
| 376 |
dx['Change_Open_Eng_to_Gia_value'] = loaded_label_encoder['Change_Open_Eng_to_Gia_value'].inverse_transform(dx['Change_Open_Eng_to_Gia_value'])
|
| 377 |
dx['Change_Pav_Eng_to_Gia_value'] = loaded_label_encoder['Change_Pav_Eng_to_Gia_value'].inverse_transform(dx['Change_Pav_Eng_to_Gia_value'])
|
| 378 |
-
|
|
|
|
|
|
|
| 379 |
# Final return with full data for pagination.
|
| 380 |
-
return df_pred,
|
| 381 |
except Exception as e:
|
| 382 |
print(f'Error processing file: {e}', 'error')
|
| 383 |
return pd.DataFrame(), pd.DataFrame()
|
|
|
|
| 146 |
|
| 147 |
|
| 148 |
# Classification models loaded using joblib.
|
| 149 |
+
'''
|
| 150 |
col_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_col.joblib'))
|
| 151 |
cts_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cts.joblib'))
|
| 152 |
cut_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cut.joblib'))
|
|
|
|
| 169 |
wht_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_wht.joblib'))
|
| 170 |
open_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_open.joblib'))
|
| 171 |
pav_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_pav.joblib'))
|
| 172 |
+
'''
|
| 173 |
+
|
| 174 |
|
| 175 |
# List of label encoder names.
|
| 176 |
encoder_list = [
|
|
|
|
| 325 |
# -------------------------
|
| 326 |
# Classification Report Section
|
| 327 |
# -------------------------
|
| 328 |
+
'''
|
| 329 |
try:
|
| 330 |
x2 = df_class.copy()
|
| 331 |
dx = df_pred.copy() # Start with the prediction data.
|
|
|
|
| 379 |
dx['Change_Wht_Eng_to_Gia_value'] = loaded_label_encoder['Change_Wht_Eng_to_Gia_value'].inverse_transform(dx['Change_Wht_Eng_to_Gia_value'])
|
| 380 |
dx['Change_Open_Eng_to_Gia_value'] = loaded_label_encoder['Change_Open_Eng_to_Gia_value'].inverse_transform(dx['Change_Open_Eng_to_Gia_value'])
|
| 381 |
dx['Change_Pav_Eng_to_Gia_value'] = loaded_label_encoder['Change_Pav_Eng_to_Gia_value'].inverse_transform(dx['Change_Pav_Eng_to_Gia_value'])
|
| 382 |
+
|
| 383 |
+
'''
|
| 384 |
+
|
| 385 |
# Final return with full data for pagination.
|
| 386 |
+
return df_pred, df_pred
|
| 387 |
except Exception as e:
|
| 388 |
print(f'Error processing file: {e}', 'error')
|
| 389 |
return pd.DataFrame(), pd.DataFrame()
|