Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -275,42 +275,52 @@ def process_dataframe(df):
|
|
| 275 |
# -------------------------
|
| 276 |
# Prediction Report Section
|
| 277 |
# -------------------------
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
|
|
|
|
|
|
|
|
|
| 287 |
|
| 288 |
# -------------------------
|
| 289 |
# Classification Report Section
|
| 290 |
# -------------------------
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
|
| 315 |
# Inverse transform classification predictions.
|
| 316 |
dx['col_change'] = loaded_label_encoder['Change_color_value'].inverse_transform(dx['col_change'])
|
|
|
|
| 275 |
# -------------------------
|
| 276 |
# Prediction Report Section
|
| 277 |
# -------------------------
|
| 278 |
+
try:
|
| 279 |
+
x = df_pred.copy()
|
| 280 |
+
df_pred['GIA_Predicted'] = gia_model.predict(x)
|
| 281 |
+
df_pred['Grade_Predicted'] = grade_model.predict(x)
|
| 282 |
+
df_pred['ByGrade_Predicted'] = bygrade_model.predict(x)
|
| 283 |
+
df_pred['Makable_Predicted'] = makable_model.predict(x)
|
| 284 |
+
df_pred['GIA_Diff'] = df_pred['EngAmt'] - df_pred['GIA_Predicted']
|
| 285 |
+
df_pred['Grade_Diff'] = df_pred['EngAmt'] - df_pred['Grade_Predicted']
|
| 286 |
+
df_pred['ByGrade_Diff'] = df_pred['EngAmt'] - df_pred['ByGrade_Predicted']
|
| 287 |
+
df_pred['Makable_Diff'] = df_pred['EngAmt'] - df_pred['Makable_Predicted']
|
| 288 |
+
except ValueError as e:
|
| 289 |
+
print(f'pred model error----->: {e}', 'error')
|
| 290 |
|
| 291 |
# -------------------------
|
| 292 |
# Classification Report Section
|
| 293 |
# -------------------------
|
| 294 |
+
try:
|
| 295 |
+
x2 = df_class.copy()
|
| 296 |
+
dx = df_pred.copy() # Start with the prediction data.
|
| 297 |
+
dx['col_change'] = col_model.predict(x2)
|
| 298 |
+
dx['cts_change'] = cts_model.predict(x2)
|
| 299 |
+
dx['cut_change'] = cut_model.predict(x2)
|
| 300 |
+
dx['qua_change'] = qua_model.predict(x2)
|
| 301 |
+
dx['shp_change'] = shp_model.predict(x2)
|
| 302 |
+
except ValueError as e:
|
| 303 |
+
print(f'class model error----->: {e}', 'error')
|
| 304 |
+
|
| 305 |
+
try:
|
| 306 |
+
dx['Change_Blk_Eng_to_Mkbl_value'] = blk_eng_to_mkbl_model.predict(x)
|
| 307 |
+
dx['Change_Wht_Eng_to_Mkbl_value'] = wht_eng_to_mkbl_model.predict(x)
|
| 308 |
+
dx['Change_Open_Eng_to_Mkbl_value'] = open_eng_to_mkbl_model.predict(x)
|
| 309 |
+
dx['Change_Pav_Eng_to_Mkbl_value'] = pav_eng_to_mkbl_model.predict(x)
|
| 310 |
+
dx['Change_Blk_Eng_to_Grd_value'] = blk_eng_to_grade_model.predict(x)
|
| 311 |
+
dx['Change_Wht_Eng_to_Grd_value'] = wht_eng_to_grade_model.predict(x)
|
| 312 |
+
dx['Change_Open_Eng_to_Grd_value'] = open_eng_to_grade_model.predict(x)
|
| 313 |
+
dx['Change_Pav_Eng_to_Grd_value'] = pav_eng_to_grade_model.predict(x)
|
| 314 |
+
dx['Change_Blk_Eng_to_ByGrd_value'] = blk_eng_to_bygrade_model.predict(x)
|
| 315 |
+
dx['Change_Wht_Eng_to_ByGrd_value'] = wht_eng_to_bygrade_model.predict(x)
|
| 316 |
+
dx['Change_Open_Eng_to_ByGrd_value'] = open_eng_to_bygrade_model.predict(x)
|
| 317 |
+
dx['Change_Pav_Eng_to_ByGrd_value'] = pav_eng_to_bygrade_model.predict(x)
|
| 318 |
+
dx['Change_Blk_Eng_to_Gia_value'] = blk_eng_to_gia_model.predict(x)
|
| 319 |
+
dx['Change_Wht_Eng_to_Gia_value'] = wht_eng_to_gia_model.predict(x)
|
| 320 |
+
dx['Change_Open_Eng_to_Gia_value'] = open_eng_to_gia_model.predict(x)
|
| 321 |
+
dx['Change_Pav_Eng_to_Gia_value'] = pav_eng_to_gia_model.predict(x)
|
| 322 |
+
except ValueError as e:
|
| 323 |
+
print(f'grade_code model error----->: {e}', 'error')
|
| 324 |
|
| 325 |
# Inverse transform classification predictions.
|
| 326 |
dx['col_change'] = loaded_label_encoder['Change_color_value'].inverse_transform(dx['col_change'])
|