Spaces:
Sleeping
Sleeping
Update README2.md
Browse files- README2.md +96 -64
README2.md
CHANGED
|
@@ -1,122 +1,154 @@
|
|
| 1 |
# AI-Based Diamond Price Prediction and Classification
|
| 2 |
|
| 3 |
-
This project
|
| 4 |
|
| 5 |
---
|
| 6 |
|
| 7 |
## π Project Overview
|
| 8 |
|
| 9 |
-
|
|
|
|
| 10 |
|
| 11 |
-
###
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
-
|
|
|
|
| 16 |
|
| 17 |
---
|
| 18 |
|
| 19 |
-
##
|
| 20 |
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
---
|
| 24 |
|
| 25 |
-
##
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
---
|
| 36 |
|
| 37 |
-
##
|
| 38 |
|
| 39 |
-
### 1οΈβ£
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
```bash
|
| 41 |
python -m venv venv
|
| 42 |
source venv/bin/activate # On Windows: venv\Scripts\activate
|
| 43 |
```
|
| 44 |
|
| 45 |
-
###
|
| 46 |
```bash
|
| 47 |
pip install -r requirements.txt
|
| 48 |
```
|
| 49 |
|
| 50 |
-
###
|
| 51 |
```bash
|
| 52 |
python app.py
|
| 53 |
```
|
| 54 |
-
|
| 55 |
-
OR (if using Docker)
|
| 56 |
-
```bash
|
| 57 |
-
docker-compose up --build
|
| 58 |
-
```
|
| 59 |
|
| 60 |
---
|
| 61 |
|
| 62 |
-
##
|
| 63 |
|
| 64 |
-
###
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
**Process:**
|
| 69 |
-
1. **Historical Learning:** AI model learns from past diamond data.
|
| 70 |
-
2. **Training:** Identifies patterns linking diamond attributes to final pricing.
|
| 71 |
-
3. **Deployment:** Predicts `GrdAmt, ByGrdAmt, GiaAmt` for new inputs.
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
---
|
| 77 |
|
| 78 |
-
|
| 79 |
-
**Input:** Engineer Plan data with additional attributes:
|
| 80 |
-
`Tag, EngCts, EngShp, EngQua, EngCol, EngCut, EngPol, EngSym, EngFlo, EngNts, EngMikly, EngLab, EngAmt, Carat, Black_Code, White_Code`
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
|
| 89 |
---
|
| 90 |
|
| 91 |
-
## π
|
| 92 |
|
| 93 |
```
|
| 94 |
.
|
| 95 |
βββ app.py # Flask application
|
| 96 |
βββ templates/
|
| 97 |
-
β βββ index.html
|
| 98 |
-
β βββ output.html
|
| 99 |
-
βββ
|
| 100 |
-
βββ Model/
|
| 101 |
-
βββ Label_encoders/
|
| 102 |
-
βββ
|
| 103 |
-
βββ
|
| 104 |
-
βββ
|
|
|
|
|
|
|
| 105 |
```
|
| 106 |
|
| 107 |
---
|
| 108 |
|
| 109 |
-
##
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
---
|
| 118 |
|
| 119 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
-
| Endpoint | Method | Description |
|
| 122 |
-
|----------|--------|-------------
|
|
|
|
| 1 |
# AI-Based Diamond Price Prediction and Classification
|
| 2 |
|
| 3 |
+
This project utilizes **machine learning and AI techniques** to predict **diamond grading prices** (GIA-certified prices, grading prices, and bygrading prices) based on various diamond attributes. Additionally, it provides classification-based recommendations for changes in diamond parameters. The system is built using **Flask**, **scikit-learn**, and **XGBoost**, and it is deployed as a web application with a user-friendly interface.
|
| 4 |
|
| 5 |
---
|
| 6 |
|
| 7 |
## π Project Overview
|
| 8 |
|
| 9 |
+
### Problem Statement
|
| 10 |
+
Manually evaluating diamond prices and certification costs is a **time-consuming and error-prone** task. This project automates the process by leveraging AI models to analyze historical data and provide **accurate predictions and recommendations** based on diamond attributes.
|
| 11 |
|
| 12 |
+
### Key Features
|
| 13 |
+
β
**Diamond Price Prediction**: Predicts GIA, grading, and bygrading prices using AI.
|
| 14 |
+
β
**Parameter Change Analysis**: Identifies and suggests modifications in diamond attributes.
|
| 15 |
+
β
**Automated Data Processing**: Cleans and preprocesses input data for better model accuracy.
|
| 16 |
+
β
**Web-Based Interface**: Flask-based UI for easy file uploads and result visualization.
|
| 17 |
+
β
**Downloadable Reports**: Users can download CSV reports for predictions and analysis.
|
| 18 |
|
| 19 |
---
|
| 20 |
|
| 21 |
+
## βοΈ Tech Stack
|
| 22 |
|
| 23 |
+
| Component | Tools/Technologies Used |
|
| 24 |
+
|---------------|----------------------|
|
| 25 |
+
| **Backend** | Flask, scikit-learn, XGBoost, NumPy, Pandas |
|
| 26 |
+
| **Frontend** | HTML, CSS, Jinja Templates |
|
| 27 |
+
| **Database** | CSV/Excel file-based input |
|
| 28 |
+
| **Deployment** | Docker, Gunicorn |
|
| 29 |
+
| **Machine Learning** | Linear Regression, Decision Trees, Random Forest, K-Nearest Neighbors, XGBoost |
|
| 30 |
|
| 31 |
---
|
| 32 |
|
| 33 |
+
## π Project Workflow
|
| 34 |
|
| 35 |
+
### πΉ Input:
|
| 36 |
+
- Users upload a CSV/Excel file containing **diamond attributes** (Tag, Carat, Shape, Quality, Color, Cut, Polish, Symmetry, Fluorescence, etc.).
|
| 37 |
+
|
| 38 |
+
### πΉ Processing:
|
| 39 |
+
- **Prediction Models** estimate GIA prices, grading prices, and bygrading prices.
|
| 40 |
+
- **Classification Models** analyze changes in diamond parameters (e.g., carat, color, cut).
|
| 41 |
+
|
| 42 |
+
### πΉ Output:
|
| 43 |
+
- Users receive **predicted values** and **recommendations** based on AI models.
|
| 44 |
+
- Results are displayed in a structured table.
|
| 45 |
+
- Users can **download reports** as CSV files.
|
| 46 |
|
| 47 |
---
|
| 48 |
|
| 49 |
+
## π οΈ Setup Instructions
|
| 50 |
|
| 51 |
+
### 1οΈβ£ Clone the Repository
|
| 52 |
+
```bash
|
| 53 |
+
git clone https://github.com/your-repo/diamond-price-prediction.git
|
| 54 |
+
cd diamond-price-prediction
|
| 55 |
+
```
|
| 56 |
+
|
| 57 |
+
### 2οΈβ£ Create a Virtual Environment (Optional)
|
| 58 |
```bash
|
| 59 |
python -m venv venv
|
| 60 |
source venv/bin/activate # On Windows: venv\Scripts\activate
|
| 61 |
```
|
| 62 |
|
| 63 |
+
### 3οΈβ£ Install Dependencies
|
| 64 |
```bash
|
| 65 |
pip install -r requirements.txt
|
| 66 |
```
|
| 67 |
|
| 68 |
+
### 4οΈβ£ Run the Application
|
| 69 |
```bash
|
| 70 |
python app.py
|
| 71 |
```
|
| 72 |
+
Visit `http://127.0.0.1:5000` in your browser.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
---
|
| 75 |
|
| 76 |
+
## π¦ Running with Docker
|
| 77 |
|
| 78 |
+
### 1οΈβ£ Build the Docker Image
|
| 79 |
+
```bash
|
| 80 |
+
docker build -t diamond-prediction .
|
| 81 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
+
### 2οΈβ£ Run the Container
|
| 84 |
+
```bash
|
| 85 |
+
docker run -p 7860:7860 diamond-prediction
|
| 86 |
+
```
|
| 87 |
+
Now, visit `http://localhost:7860` to use the app.
|
| 88 |
|
| 89 |
---
|
| 90 |
|
| 91 |
+
## π API Endpoints
|
|
|
|
|
|
|
| 92 |
|
| 93 |
+
| Endpoint | Method | Description |
|
| 94 |
+
|----------|--------|-------------|
|
| 95 |
+
| `/` | GET | Home page |
|
| 96 |
+
| `/predict` | POST | Uploads a CSV/Excel file and predicts diamond prices |
|
| 97 |
+
| `/download_pred` | GET | Downloads prediction results as CSV |
|
| 98 |
+
| `/download_class` | GET | Downloads classification analysis as CSV |
|
| 99 |
|
| 100 |
---
|
| 101 |
|
| 102 |
+
## π Project Structure
|
| 103 |
|
| 104 |
```
|
| 105 |
.
|
| 106 |
βββ app.py # Flask application
|
| 107 |
βββ templates/
|
| 108 |
+
β βββ index.html # Home page template
|
| 109 |
+
β βββ output.html # Output display template
|
| 110 |
+
βββ static/ # CSS and static files
|
| 111 |
+
βββ Model/ # Trained ML models (.joblib)
|
| 112 |
+
βββ Label_encoders/ # Pretrained label encoders
|
| 113 |
+
βββ uploads/ # Uploaded files storage
|
| 114 |
+
βββ data/ # Processed data files
|
| 115 |
+
βββ requirements.txt # Dependencies list
|
| 116 |
+
βββ Dockerfile # Docker setup
|
| 117 |
+
βββ README.md # Documentation
|
| 118 |
```
|
| 119 |
|
| 120 |
---
|
| 121 |
|
| 122 |
+
## π Example Use Cases
|
| 123 |
|
| 124 |
+
### 1οΈβ£ Predicting Diamond Prices
|
| 125 |
+
- Upload a **diamond dataset (CSV/Excel)**.
|
| 126 |
+
- The AI model predicts **GIA price, grading price, and bygrading price**.
|
| 127 |
+
- Download the results as a structured report.
|
| 128 |
+
|
| 129 |
+
### 2οΈβ£ Identifying Diamond Parameter Changes
|
| 130 |
+
- AI analyzes changes in **carat, cut, color, and other attributes**.
|
| 131 |
+
- Alerts users to potential modifications in the diamond properties.
|
| 132 |
|
| 133 |
---
|
| 134 |
|
| 135 |
+
## π Future Enhancements
|
| 136 |
+
- β
Improve model accuracy with deep learning.
|
| 137 |
+
- β
Add support for **real-time API integration** with diamond pricing databases.
|
| 138 |
+
- β
Extend the system to predict **market trends** using time-series forecasting.
|
| 139 |
+
|
| 140 |
+
---
|
| 141 |
+
|
| 142 |
+
## π License
|
| 143 |
+
This project is licensed under the **MIT License**.
|
| 144 |
+
|
| 145 |
+
---
|
| 146 |
+
|
| 147 |
+
## π‘ Credits
|
| 148 |
+
Developed by **Webashlar**, a leading IT company specializing in AI, data science, and software solutions.
|
| 149 |
+
|
| 150 |
+
Happy predicting! πβ¨
|
| 151 |
+
```
|
| 152 |
+
|
| 153 |
+
---
|
| 154 |
|
|
|
|
|
|