Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -82,13 +82,14 @@ os.makedirs(app.config['MODEL_FOLDER'], exist_ok=True) | |
| 82 | 
             
            # Prediction analysis models loaded from Hugging Face.
         | 
| 83 | 
             
            src_path = hf_hub_download(
         | 
| 84 | 
             
                repo_id="WebashalarForML/Diamond_model_",
         | 
| 85 | 
            -
                filename="models_list/mkble/ | 
| 86 | 
             
                cache_dir=MODEL_FOLDER
         | 
| 87 | 
             
            )
         | 
| 88 | 
            -
            dst_path = os.path.join(MODEL_FOLDER, " | 
| 89 | 
             
            shutil.copy(src_path, dst_path)
         | 
| 90 | 
             
            makable_model = load(dst_path)
         | 
| 91 |  | 
|  | |
| 92 | 
             
            src_path = hf_hub_download(
         | 
| 93 | 
             
                repo_id="WebashalarForML/Diamond_model_",
         | 
| 94 | 
             
                filename="models_list/grd/StackingRegressor_best_pipeline_grd_0_to_1.01.pkl",
         | 
| @@ -117,7 +118,7 @@ src_path = hf_hub_download( | |
| 117 | 
             
            dst_path = os.path.join(MODEL_FOLDER, "StackingRegressor_best_pipeline_gia_0_to_1.01.pkl")
         | 
| 118 | 
             
            shutil.copy(src_path, dst_path)
         | 
| 119 | 
             
            gia_model = load(dst_path)
         | 
| 120 | 
            -
             | 
| 121 |  | 
| 122 | 
             
            #classsification model on the task
         | 
| 123 | 
             
            src_path = hf_hub_download(
         | 
| @@ -133,9 +134,9 @@ mkble_amt_class_model = load(dst_path) | |
| 133 |  | 
| 134 |  | 
| 135 | 
             
            print("makable_model type:", type(makable_model))
         | 
| 136 | 
            -
            print("grade_model type:", type(grade_model))
         | 
| 137 | 
            -
            print("bygrade_model type:", type(bygrade_model))
         | 
| 138 | 
            -
            print("gia_model type:", type(gia_model))
         | 
| 139 | 
             
            print("================================")
         | 
| 140 | 
             
            print("mkble_amt_class_model type:", type(mkble_amt_class_model))
         | 
| 141 |  | 
| @@ -260,7 +261,9 @@ def process_dataframe(df): | |
| 260 |  | 
| 261 | 
             
                    # Create two DataFrames: one for prediction and one for classification.
         | 
| 262 | 
             
                    df_pred = df[required_columns].copy()
         | 
|  | |
| 263 | 
             
                    df_pred[['EngBlk', 'EngWht', 'EngOpen', 'EngPav']]=df_pred[['EngBlk', 'EngWht', 'EngOpen', 'EngPav']].fillna("NA")
         | 
|  | |
| 264 | 
             
                    df_class = df[required_columns_2].fillna("NA").copy()
         | 
| 265 |  | 
| 266 | 
             
                    # Transform categorical columns for prediction DataFrame using the label encoders.
         | 
|  | |
| 82 | 
             
            # Prediction analysis models loaded from Hugging Face.
         | 
| 83 | 
             
            src_path = hf_hub_download(
         | 
| 84 | 
             
                repo_id="WebashalarForML/Diamond_model_",
         | 
| 85 | 
            +
                filename="models_list/mkble/DecisionTree_best_pipeline_mkble_0_to_0.99.pkl",
         | 
| 86 | 
             
                cache_dir=MODEL_FOLDER
         | 
| 87 | 
             
            )
         | 
| 88 | 
            +
            dst_path = os.path.join(MODEL_FOLDER, "DecisionTree_best_pipeline_mkble_0_to_0.99.pkl")
         | 
| 89 | 
             
            shutil.copy(src_path, dst_path)
         | 
| 90 | 
             
            makable_model = load(dst_path)
         | 
| 91 |  | 
| 92 | 
            +
            '''
         | 
| 93 | 
             
            src_path = hf_hub_download(
         | 
| 94 | 
             
                repo_id="WebashalarForML/Diamond_model_",
         | 
| 95 | 
             
                filename="models_list/grd/StackingRegressor_best_pipeline_grd_0_to_1.01.pkl",
         | 
|  | |
| 118 | 
             
            dst_path = os.path.join(MODEL_FOLDER, "StackingRegressor_best_pipeline_gia_0_to_1.01.pkl")
         | 
| 119 | 
             
            shutil.copy(src_path, dst_path)
         | 
| 120 | 
             
            gia_model = load(dst_path)
         | 
| 121 | 
            +
            '''
         | 
| 122 |  | 
| 123 | 
             
            #classsification model on the task
         | 
| 124 | 
             
            src_path = hf_hub_download(
         | 
|  | |
| 134 |  | 
| 135 |  | 
| 136 | 
             
            print("makable_model type:", type(makable_model))
         | 
| 137 | 
            +
            #print("grade_model type:", type(grade_model))
         | 
| 138 | 
            +
            #print("bygrade_model type:", type(bygrade_model))
         | 
| 139 | 
            +
            #print("gia_model type:", type(gia_model))
         | 
| 140 | 
             
            print("================================")
         | 
| 141 | 
             
            print("mkble_amt_class_model type:", type(mkble_amt_class_model))
         | 
| 142 |  | 
|  | |
| 261 |  | 
| 262 | 
             
                    # Create two DataFrames: one for prediction and one for classification.
         | 
| 263 | 
             
                    df_pred = df[required_columns].copy()
         | 
| 264 | 
            +
                    df_pred = df_pred[(df_pred[['EngCts']] > 0.00).all(axis=1) & (df_pred[['EngCts']] <= 0.99).all(axis=1)]
         | 
| 265 | 
             
                    df_pred[['EngBlk', 'EngWht', 'EngOpen', 'EngPav']]=df_pred[['EngBlk', 'EngWht', 'EngOpen', 'EngPav']].fillna("NA")
         | 
| 266 | 
            +
                    df_pred = df_pred[(df_pred[['MkblAmt', 'GrdAmt', 'ByGrdAmt', 'GiaAmt', 'EngCts']] != 0).all(axis=1)]
         | 
| 267 | 
             
                    df_class = df[required_columns_2].fillna("NA").copy()
         | 
| 268 |  | 
| 269 | 
             
                    # Transform categorical columns for prediction DataFrame using the label encoders.
         | 
