Spaces:
Running
Running
| from os import listdir, path | |
| import numpy as np | |
| import scipy, cv2, os, sys, argparse, audio | |
| import json, subprocess, random, string | |
| from tqdm import tqdm | |
| from glob import glob | |
| import torch, face_detection | |
| from models import Wav2Lip | |
| import platform | |
| parser = argparse.ArgumentParser(description='Inference code to lip-sync videos in the wild using Wav2Lip models') | |
| parser.add_argument('--checkpoint_path', type=str, | |
| help='Name of saved checkpoint to load weights from', required=True) | |
| parser.add_argument('--face', type=str, | |
| help='Filepath of video/image that contains faces to use', required=True) | |
| parser.add_argument('--audio', type=str, | |
| help='Filepath of video/audio file to use as raw audio source', required=True) | |
| parser.add_argument('--outfile', type=str, help='Video path to save result. See default for an e.g.', | |
| default='results/result_voice.mp4') | |
| parser.add_argument('--static', type=bool, | |
| help='If True, then use only first video frame for inference', default=False) | |
| parser.add_argument('--fps', type=float, help='Can be specified only if input is a static image (default: 25)', | |
| default=25., required=False) | |
| parser.add_argument('--pads', nargs='+', type=int, default=[0, 10, 0, 0], | |
| help='Padding (top, bottom, left, right). Please adjust to include chin at least') | |
| parser.add_argument('--face_det_batch_size', type=int, | |
| help='Batch size for face detection', default=16) | |
| parser.add_argument('--wav2lip_batch_size', type=int, help='Batch size for Wav2Lip model(s)', default=128) | |
| parser.add_argument('--resize_factor', default=1, type=int, | |
| help='Reduce the resolution by this factor. Sometimes, best results are obtained at 480p or 720p') | |
| parser.add_argument('--crop', nargs='+', type=int, default=[0, -1, 0, -1], | |
| help='Crop video to a smaller region (top, bottom, left, right). Applied after resize_factor and rotate arg. ' | |
| 'Useful if multiple face present. -1 implies the value will be auto-inferred based on height, width') | |
| parser.add_argument('--box', nargs='+', type=int, default=[-1, -1, -1, -1], | |
| help='Specify a constant bounding box for the face. Use only as a last resort if the face is not detected.' | |
| 'Also, might work only if the face is not moving around much. Syntax: (top, bottom, left, right).') | |
| parser.add_argument('--rotate', default=False, action='store_true', | |
| help='Sometimes videos taken from a phone can be flipped 90deg. If true, will flip video right by 90deg.' | |
| 'Use if you get a flipped result, despite feeding a normal looking video') | |
| parser.add_argument('--nosmooth', default=False, action='store_true', | |
| help='Prevent smoothing face detections over a short temporal window') | |
| args = parser.parse_args() | |
| args.img_size = 96 | |
| if os.path.isfile(args.face) and args.face.split('.')[1] in ['jpg', 'png', 'jpeg']: | |
| args.static = True | |
| def get_smoothened_boxes(boxes, T): | |
| for i in range(len(boxes)): | |
| if i + T > len(boxes): | |
| window = boxes[len(boxes) - T:] | |
| else: | |
| window = boxes[i : i + T] | |
| boxes[i] = np.mean(window, axis=0) | |
| return boxes | |
| def face_detect(images): | |
| detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D, | |
| flip_input=False, device=device) | |
| batch_size = args.face_det_batch_size | |
| while 1: | |
| predictions = [] | |
| try: | |
| for i in tqdm(range(0, len(images), batch_size)): | |
| predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size]))) | |
| except RuntimeError: | |
| if batch_size == 1: | |
| raise RuntimeError('Image too big to run face detection on GPU. Please use the --resize_factor argument') | |
| batch_size //= 2 | |
| print('Recovering from OOM error; New batch size: {}'.format(batch_size)) | |
| continue | |
| break | |
| results = [] | |
| pady1, pady2, padx1, padx2 = args.pads | |
| for rect, image in zip(predictions, images): | |
| if rect is None: | |
| cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected. | |
| raise ValueError('Face not detected! Ensure the video contains a face in all the frames.') | |
| y1 = max(0, rect[1] - pady1) | |
| y2 = min(image.shape[0], rect[3] + pady2) | |
| x1 = max(0, rect[0] - padx1) | |
| x2 = min(image.shape[1], rect[2] + padx2) | |
| results.append([x1, y1, x2, y2]) | |
| boxes = np.array(results) | |
| if not args.nosmooth: boxes = get_smoothened_boxes(boxes, T=5) | |
| results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)] | |
| del detector | |
| return results | |
| def datagen(frames, mels): | |
| img_batch, mel_batch, frame_batch, coords_batch = [], [], [], [] | |
| if args.box[0] == -1: | |
| if not args.static: | |
| face_det_results = face_detect(frames) # BGR2RGB for CNN face detection | |
| else: | |
| face_det_results = face_detect([frames[0]]) | |
| else: | |
| print('Using the specified bounding box instead of face detection...') | |
| y1, y2, x1, x2 = args.box | |
| face_det_results = [[f[y1: y2, x1:x2], (y1, y2, x1, x2)] for f in frames] | |
| for i, m in enumerate(mels): | |
| idx = 0 if args.static else i%len(frames) | |
| frame_to_save = frames[idx].copy() | |
| face, coords = face_det_results[idx].copy() | |
| face = cv2.resize(face, (args.img_size, args.img_size)) | |
| img_batch.append(face) | |
| mel_batch.append(m) | |
| frame_batch.append(frame_to_save) | |
| coords_batch.append(coords) | |
| if len(img_batch) >= args.wav2lip_batch_size: | |
| img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch) | |
| img_masked = img_batch.copy() | |
| img_masked[:, args.img_size//2:] = 0 | |
| img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255. | |
| mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]) | |
| yield img_batch, mel_batch, frame_batch, coords_batch | |
| img_batch, mel_batch, frame_batch, coords_batch = [], [], [], [] | |
| if len(img_batch) > 0: | |
| img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch) | |
| img_masked = img_batch.copy() | |
| img_masked[:, args.img_size//2:] = 0 | |
| img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255. | |
| mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]) | |
| yield img_batch, mel_batch, frame_batch, coords_batch | |
| mel_step_size = 16 | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| print('Using {} for inference.'.format(device)) | |
| # def _load(checkpoint_path): | |
| # if device == 'cuda': | |
| # checkpoint = torch.load(checkpoint_path) | |
| # else: | |
| # checkpoint = torch.load(checkpoint_path, | |
| # map_location=lambda storage, loc: storage) | |
| # return checkpoint | |
| def _load(checkpoint_path): | |
| # Use torch.jit.load for TorchScript archives | |
| if device == 'cuda': | |
| model = torch.jit.load(checkpoint_path) | |
| else: | |
| # Accepts string or torch.device, not a lambda | |
| model = torch.jit.load(checkpoint_path, map_location='cpu') | |
| return model | |
| # def load_model(path): | |
| # model = Wav2Lip() | |
| # print("Load checkpoint from: {}".format(path)) | |
| # checkpoint = _load(path) | |
| # s = checkpoint["state_dict"] | |
| # new_s = {} | |
| # for k, v in s.items(): | |
| # new_s[k.replace('module.', '')] = v | |
| # model.load_state_dict(new_s) | |
| # model = model.to(device) | |
| # return model.eval() | |
| def load_model(path): | |
| print("Loading scripted model from:", path) | |
| model = _load(path) # returns the TorchScript Module | |
| model = model.to(device) # move to CPU or GPU | |
| return model.eval() # set to eval() mode | |
| def main(): | |
| if not os.path.isfile(args.face): | |
| raise ValueError('--face argument must be a valid path to video/image file') | |
| elif args.face.split('.')[1] in ['jpg', 'png', 'jpeg']: | |
| full_frames = [cv2.imread(args.face)] | |
| fps = args.fps | |
| else: | |
| video_stream = cv2.VideoCapture(args.face) | |
| fps = video_stream.get(cv2.CAP_PROP_FPS) | |
| print('Reading video frames...') | |
| full_frames = [] | |
| while 1: | |
| still_reading, frame = video_stream.read() | |
| if not still_reading: | |
| video_stream.release() | |
| break | |
| if args.resize_factor > 1: | |
| frame = cv2.resize(frame, (frame.shape[1]//args.resize_factor, frame.shape[0]//args.resize_factor)) | |
| if args.rotate: | |
| frame = cv2.rotate(frame, cv2.cv2.ROTATE_90_CLOCKWISE) | |
| y1, y2, x1, x2 = args.crop | |
| if x2 == -1: x2 = frame.shape[1] | |
| if y2 == -1: y2 = frame.shape[0] | |
| frame = frame[y1:y2, x1:x2] | |
| full_frames.append(frame) | |
| print ("Number of frames available for inference: "+str(len(full_frames))) | |
| if not args.audio.endswith('.wav'): | |
| print('Extracting raw audio...') | |
| command = 'ffmpeg -y -i {} -strict -2 {}'.format(args.audio, 'temp/temp.wav') | |
| subprocess.call(command, shell=True) | |
| args.audio = 'temp/temp.wav' | |
| wav = audio.load_wav(args.audio, 16000) | |
| mel = audio.melspectrogram(wav) | |
| print(mel.shape) | |
| if np.isnan(mel.reshape(-1)).sum() > 0: | |
| raise ValueError('Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again') | |
| mel_chunks = [] | |
| mel_idx_multiplier = 80./fps | |
| i = 0 | |
| while 1: | |
| start_idx = int(i * mel_idx_multiplier) | |
| if start_idx + mel_step_size > len(mel[0]): | |
| mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:]) | |
| break | |
| mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size]) | |
| i += 1 | |
| print("Length of mel chunks: {}".format(len(mel_chunks))) | |
| full_frames = full_frames[:len(mel_chunks)] | |
| batch_size = args.wav2lip_batch_size | |
| gen = datagen(full_frames.copy(), mel_chunks) | |
| for i, (img_batch, mel_batch, frames, coords) in enumerate(tqdm(gen, | |
| total=int(np.ceil(float(len(mel_chunks))/batch_size)))): | |
| if i == 0: | |
| model = load_model(args.checkpoint_path) | |
| print ("Model loaded") | |
| frame_h, frame_w = full_frames[0].shape[:-1] | |
| out = cv2.VideoWriter('temp/result.avi', | |
| cv2.VideoWriter_fourcc(*'DIVX'), fps, (frame_w, frame_h)) | |
| img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device) | |
| mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device) | |
| with torch.no_grad(): | |
| pred = model(mel_batch, img_batch) | |
| pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255. | |
| for p, f, c in zip(pred, frames, coords): | |
| y1, y2, x1, x2 = c | |
| p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1)) | |
| f[y1:y2, x1:x2] = p | |
| out.write(f) | |
| out.release() | |
| command = 'ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}'.format(args.audio, 'temp/result.avi', args.outfile) | |
| subprocess.call(command, shell=platform.system() != 'Windows') | |
| if __name__ == '__main__': | |
| main() | |