Spaces:
Running
Running
| import torch | |
| from torch import nn | |
| from torch.nn import functional as F | |
| class Conv2d(nn.Module): | |
| def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| self.conv_block = nn.Sequential( | |
| nn.Conv2d(cin, cout, kernel_size, stride, padding), | |
| nn.BatchNorm2d(cout) | |
| ) | |
| self.act = nn.ReLU() | |
| self.residual = residual | |
| def forward(self, x): | |
| out = self.conv_block(x) | |
| if self.residual: | |
| out += x | |
| return self.act(out) | |
| class nonorm_Conv2d(nn.Module): | |
| def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| self.conv_block = nn.Sequential( | |
| nn.Conv2d(cin, cout, kernel_size, stride, padding), | |
| ) | |
| self.act = nn.LeakyReLU(0.01, inplace=True) | |
| def forward(self, x): | |
| out = self.conv_block(x) | |
| return self.act(out) | |
| class Conv2dTranspose(nn.Module): | |
| def __init__(self, cin, cout, kernel_size, stride, padding, output_padding=0, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| self.conv_block = nn.Sequential( | |
| nn.ConvTranspose2d(cin, cout, kernel_size, stride, padding, output_padding), | |
| nn.BatchNorm2d(cout) | |
| ) | |
| self.act = nn.ReLU() | |
| def forward(self, x): | |
| out = self.conv_block(x) | |
| return self.act(out) | |