Spaces:
Sleeping
Sleeping
Commit
·
33f6d66
1
Parent(s):
754c22b
using int8 quantized model
Browse files- app.py +14 -55
- app_backup.py +75 -0
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,34 +1,12 @@
|
|
1 |
from fastapi import FastAPI, Request, HTTPException
|
2 |
-
import torch
|
3 |
-
import torchaudio
|
4 |
-
from transformers import AutoProcessor, pipeline
|
5 |
import io
|
6 |
-
|
7 |
-
from
|
8 |
-
import numpy as np
|
9 |
import uvicorn
|
10 |
-
app = FastAPI()
|
11 |
-
|
12 |
-
# Device configuration
|
13 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
-
print(device)
|
15 |
-
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
16 |
-
|
17 |
-
# Load the model and processor
|
18 |
-
model_id = "WajeehAzeemX/whisper-small-ar2_onnx"
|
19 |
-
model = ORTModelForSpeechSeq2Seq.from_pretrained(
|
20 |
-
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
21 |
-
)
|
22 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
23 |
|
|
|
24 |
|
25 |
-
|
26 |
-
"automatic-speech-recognition",
|
27 |
-
model=model,
|
28 |
-
tokenizer=processor.tokenizer,
|
29 |
-
feature_extractor=processor.feature_extractor,
|
30 |
-
torch_dtype=torch_dtype,
|
31 |
-
)
|
32 |
|
33 |
@app.post("/transcribe/")
|
34 |
async def transcribe_audio(request: Request):
|
@@ -38,37 +16,18 @@ async def transcribe_audio(request: Request):
|
|
38 |
|
39 |
# Convert binary data to a file-like object
|
40 |
audio_file = io.BytesIO(audio_data)
|
41 |
-
|
42 |
-
# Load the audio file using pydub
|
43 |
-
try:
|
44 |
-
audio_segment = AudioSegment.from_file(audio_file, format="wav")
|
45 |
-
except Exception as e:
|
46 |
-
raise HTTPException(status_code=400, detail=f"Error loading audio file: {str(e)}")
|
47 |
|
48 |
-
#
|
49 |
-
|
50 |
-
audio_segment = audio_segment.set_channels(1)
|
51 |
|
52 |
-
#
|
53 |
-
|
54 |
-
|
55 |
-
audio_segment = audio_segment.set_frame_rate(target_sample_rate)
|
56 |
|
57 |
-
#
|
58 |
-
|
59 |
-
if audio_segment.sample_width == 2:
|
60 |
-
audio_array = audio_array.astype(np.float32) / 32768.0
|
61 |
-
else:
|
62 |
-
raise HTTPException(status_code=400, detail="Unsupported sample width")
|
63 |
|
64 |
-
|
65 |
-
inputs = processor(audio_array, sampling_rate=target_sample_rate, return_tensors="pt")
|
66 |
-
inputs = inputs.to(device)
|
67 |
-
|
68 |
-
# Get the transcription result
|
69 |
-
result = pipe(audio_array)
|
70 |
-
transcription = result["text"]
|
71 |
-
|
72 |
-
return {"transcription": transcription}
|
73 |
except Exception as e:
|
74 |
-
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
1 |
from fastapi import FastAPI, Request, HTTPException
|
|
|
|
|
|
|
2 |
import io
|
3 |
+
import time
|
4 |
+
from faster_whisper import WhisperModel
|
|
|
5 |
import uvicorn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
app = FastAPI()
|
8 |
|
9 |
+
model = WhisperModel("WajeehAzeemX/faster-whisper-smallar2-int8", device="cpu", compute_type="int8")
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
@app.post("/transcribe/")
|
12 |
async def transcribe_audio(request: Request):
|
|
|
16 |
|
17 |
# Convert binary data to a file-like object
|
18 |
audio_file = io.BytesIO(audio_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# Start timing the transcription
|
21 |
+
start_time = time.time()
|
|
|
22 |
|
23 |
+
# Transcribe the audio
|
24 |
+
segments, info = model.transcribe(audio_file)
|
25 |
+
transcription = " ".join([segment.text for segment in segments])
|
|
|
26 |
|
27 |
+
# Calculate time taken
|
28 |
+
time_taken = time.time() - start_time
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
return {"transcription": transcription, "time_taken": time_taken}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
except Exception as e:
|
32 |
+
raise HTTPException(status_code=500, detail=str(e))
|
33 |
+
|
app_backup.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from fastapi import FastAPI, Request, HTTPException
|
3 |
+
import torch
|
4 |
+
import torchaudio
|
5 |
+
from transformers import AutoProcessor, pipeline
|
6 |
+
import io
|
7 |
+
from pydub import AudioSegment
|
8 |
+
from optimum.onnxruntime import ORTModelForSpeechSeq2Seq
|
9 |
+
import numpy as np
|
10 |
+
import uvicorn
|
11 |
+
app = FastAPI()
|
12 |
+
|
13 |
+
# Device configuration
|
14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
print(device)
|
16 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
17 |
+
|
18 |
+
# Load the model and processor
|
19 |
+
model_id = "WajeehAzeemX/whisper-small-ar2_onnx"
|
20 |
+
model = ORTModelForSpeechSeq2Seq.from_pretrained(
|
21 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
22 |
+
)
|
23 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
24 |
+
|
25 |
+
|
26 |
+
pipe = pipeline(
|
27 |
+
"automatic-speech-recognition",
|
28 |
+
model=model,
|
29 |
+
tokenizer=processor.tokenizer,
|
30 |
+
feature_extractor=processor.feature_extractor,
|
31 |
+
torch_dtype=torch_dtype,
|
32 |
+
)
|
33 |
+
|
34 |
+
@app.post("/transcribe/")
|
35 |
+
async def transcribe_audio(request: Request):
|
36 |
+
try:
|
37 |
+
# Read binary data from the request
|
38 |
+
audio_data = await request.body()
|
39 |
+
|
40 |
+
# Convert binary data to a file-like object
|
41 |
+
audio_file = io.BytesIO(audio_data)
|
42 |
+
|
43 |
+
# Load the audio file using pydub
|
44 |
+
try:
|
45 |
+
audio_segment = AudioSegment.from_file(audio_file, format="wav")
|
46 |
+
except Exception as e:
|
47 |
+
raise HTTPException(status_code=400, detail=f"Error loading audio file: {str(e)}")
|
48 |
+
|
49 |
+
# Convert to mono if the audio is stereo (multi-channel)
|
50 |
+
if audio_segment.channels > 1:
|
51 |
+
audio_segment = audio_segment.set_channels(1)
|
52 |
+
|
53 |
+
# Resample the audio to 16kHz
|
54 |
+
target_sample_rate = 16000
|
55 |
+
if audio_segment.frame_rate != target_sample_rate:
|
56 |
+
audio_segment = audio_segment.set_frame_rate(target_sample_rate)
|
57 |
+
|
58 |
+
# Convert audio to numpy array
|
59 |
+
audio_array = np.array(audio_segment.get_array_of_samples())
|
60 |
+
if audio_segment.sample_width == 2:
|
61 |
+
audio_array = audio_array.astype(np.float32) / 32768.0
|
62 |
+
else:
|
63 |
+
raise HTTPException(status_code=400, detail="Unsupported sample width")
|
64 |
+
|
65 |
+
# Convert to the format expected by the model
|
66 |
+
inputs = processor(audio_array, sampling_rate=target_sample_rate, return_tensors="pt")
|
67 |
+
inputs = inputs.to(device)
|
68 |
+
|
69 |
+
# Get the transcription result
|
70 |
+
result = pipe(audio_array)
|
71 |
+
transcription = result["text"]
|
72 |
+
|
73 |
+
return {"transcription": transcription}
|
74 |
+
except Exception as e:
|
75 |
+
raise HTTPException(status_code=500, detail=str(e))
|
requirements.txt
CHANGED
@@ -9,4 +9,5 @@ pydub
|
|
9 |
numpy
|
10 |
onnx
|
11 |
optimum
|
12 |
-
onnxruntime
|
|
|
|
9 |
numpy
|
10 |
onnx
|
11 |
optimum
|
12 |
+
onnxruntime
|
13 |
+
faster_whisper
|