Vx2-3y
commited on
Commit
·
a08b2e2
1
Parent(s):
f9abbde
Integrate Redis job queue: async job submission, status, and model flexibility
Browse files- main.py +65 -4
- requirements.txt +4 -1
main.py
CHANGED
|
@@ -5,6 +5,10 @@ import os
|
|
| 5 |
import logging
|
| 6 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 7 |
from huggingface_hub import login
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
app = FastAPI(
|
| 10 |
title="NCOS Compliance LLM API",
|
|
@@ -63,6 +67,51 @@ except Exception as e:
|
|
| 63 |
logger.error(f"Model loading failed: {e}")
|
| 64 |
ncos_pipeline = None
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
# --- Endpoints ---
|
| 67 |
|
| 68 |
@app.post("/infer", response_model=InferResponse, summary="Run model inference", description="Run LLM inference on the input text and return the result.")
|
|
@@ -109,8 +158,14 @@ def submit_job(request: QueueRequest):
|
|
| 109 |
- **parameters**: Optional model parameters.
|
| 110 |
Returns a job ID and status.
|
| 111 |
"""
|
| 112 |
-
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
return QueueResponse(job_id=job_id, status="queued")
|
| 115 |
|
| 116 |
@app.get("/queue", response_model=QueueResponse, summary="Get job status/result", description="Get the status or result of a queued job by job_id.")
|
|
@@ -120,8 +175,14 @@ def get_job_status(job_id: str):
|
|
| 120 |
- **job_id**: The job identifier.
|
| 121 |
Returns the job status and result if available.
|
| 122 |
"""
|
| 123 |
-
|
| 124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
@app.get("/")
|
| 127 |
def root():
|
|
|
|
| 5 |
import logging
|
| 6 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 7 |
from huggingface_hub import login
|
| 8 |
+
import threading
|
| 9 |
+
import time
|
| 10 |
+
import uuid
|
| 11 |
+
import redis
|
| 12 |
|
| 13 |
app = FastAPI(
|
| 14 |
title="NCOS Compliance LLM API",
|
|
|
|
| 67 |
logger.error(f"Model loading failed: {e}")
|
| 68 |
ncos_pipeline = None
|
| 69 |
|
| 70 |
+
# --- Redis Connection ---
|
| 71 |
+
REDIS_URL = os.getenv("REDIS_URL", "redis://localhost:6379/0") # Set your cloud Redis URL in env
|
| 72 |
+
redis_client = redis.Redis.from_url(REDIS_URL)
|
| 73 |
+
|
| 74 |
+
# --- Job Queue Logic ---
|
| 75 |
+
JOB_QUEUE = "ncos_job_queue"
|
| 76 |
+
JOB_RESULT_PREFIX = "ncos_job_result:"
|
| 77 |
+
|
| 78 |
+
# --- Model Cache ---
|
| 79 |
+
model_cache = {"name": None, "pipeline": None}
|
| 80 |
+
|
| 81 |
+
# --- Background Worker Thread ---
|
| 82 |
+
def job_worker():
|
| 83 |
+
while True:
|
| 84 |
+
job_data = redis_client.lpop(JOB_QUEUE)
|
| 85 |
+
if job_data:
|
| 86 |
+
job = eval(job_data) # In production, use json.loads for safety
|
| 87 |
+
job_id = job["job_id"]
|
| 88 |
+
input_text = job["input_text"]
|
| 89 |
+
parameters = job.get("parameters", {})
|
| 90 |
+
model_name = job.get("model_name", "gpt2")
|
| 91 |
+
try:
|
| 92 |
+
# Load model if needed
|
| 93 |
+
if model_cache["name"] != model_name:
|
| 94 |
+
logger.info(f"Loading model for job: {model_name}")
|
| 95 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 96 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 97 |
+
model_cache["pipeline"] = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0)
|
| 98 |
+
model_cache["name"] = model_name
|
| 99 |
+
pipe = model_cache["pipeline"]
|
| 100 |
+
params = parameters or {}
|
| 101 |
+
params.setdefault("max_new_tokens", 128)
|
| 102 |
+
params.setdefault("temperature", 0.7)
|
| 103 |
+
output = pipe(input_text, **params)
|
| 104 |
+
result_text = output[0]["generated_text"] if output and "generated_text" in output[0] else str(output)
|
| 105 |
+
redis_client.set(JOB_RESULT_PREFIX + job_id, result_text)
|
| 106 |
+
except Exception as e:
|
| 107 |
+
logger.error(f"Job {job_id} failed: {e}")
|
| 108 |
+
redis_client.set(JOB_RESULT_PREFIX + job_id, f"ERROR: {e}")
|
| 109 |
+
else:
|
| 110 |
+
time.sleep(1)
|
| 111 |
+
|
| 112 |
+
# Start background worker thread
|
| 113 |
+
threading.Thread(target=job_worker, daemon=True).start()
|
| 114 |
+
|
| 115 |
# --- Endpoints ---
|
| 116 |
|
| 117 |
@app.post("/infer", response_model=InferResponse, summary="Run model inference", description="Run LLM inference on the input text and return the result.")
|
|
|
|
| 158 |
- **parameters**: Optional model parameters.
|
| 159 |
Returns a job ID and status.
|
| 160 |
"""
|
| 161 |
+
job_id = str(uuid.uuid4())
|
| 162 |
+
job = {
|
| 163 |
+
"job_id": job_id,
|
| 164 |
+
"input_text": request.input_text,
|
| 165 |
+
"parameters": request.parameters,
|
| 166 |
+
"model_name": os.getenv("HF_MODEL_NAME", "gpt2") # Allow override per job in future
|
| 167 |
+
}
|
| 168 |
+
redis_client.rpush(JOB_QUEUE, str(job))
|
| 169 |
return QueueResponse(job_id=job_id, status="queued")
|
| 170 |
|
| 171 |
@app.get("/queue", response_model=QueueResponse, summary="Get job status/result", description="Get the status or result of a queued job by job_id.")
|
|
|
|
| 175 |
- **job_id**: The job identifier.
|
| 176 |
Returns the job status and result if available.
|
| 177 |
"""
|
| 178 |
+
result = redis_client.get(JOB_RESULT_PREFIX + job_id)
|
| 179 |
+
if result:
|
| 180 |
+
result_str = result.decode("utf-8")
|
| 181 |
+
if result_str.startswith("ERROR:"):
|
| 182 |
+
return QueueResponse(job_id=job_id, status="error", error=result_str)
|
| 183 |
+
return QueueResponse(job_id=job_id, status="done", result=result_str)
|
| 184 |
+
else:
|
| 185 |
+
return QueueResponse(job_id=job_id, status="pending")
|
| 186 |
|
| 187 |
@app.get("/")
|
| 188 |
def root():
|
requirements.txt
CHANGED
|
@@ -23,4 +23,7 @@ huggingface_hub==0.23.1
|
|
| 23 |
torch==2.2.2
|
| 24 |
|
| 25 |
# Pin numpy to <2 to avoid incompatibility with modules compiled against numpy 1.x
|
| 26 |
-
numpy<2
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
torch==2.2.2
|
| 24 |
|
| 25 |
# Pin numpy to <2 to avoid incompatibility with modules compiled against numpy 1.x
|
| 26 |
+
numpy<2
|
| 27 |
+
|
| 28 |
+
# For Redis job queue integration
|
| 29 |
+
redis==5.0.3
|