Model Predictions
Browse files- MakePredictions.py +138 -0
MakePredictions.py
ADDED
|
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from spacy.lang.en import English
|
| 3 |
+
import pandas as pd
|
| 4 |
+
|
| 5 |
+
import nltk
|
| 6 |
+
from nltk.corpus import stopwords
|
| 7 |
+
from nltk.stem import PorterStemmer
|
| 8 |
+
import re
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
|
| 13 |
+
from Dataset import SkimlitDataset
|
| 14 |
+
|
| 15 |
+
# nltk.download("stopwords")
|
| 16 |
+
# STOPWORDS = stopwords.words("english")
|
| 17 |
+
# porter = PorterStemmer()
|
| 18 |
+
|
| 19 |
+
def download_stopwords():
|
| 20 |
+
nltk.download("stopwords")
|
| 21 |
+
STOPWORDS = stopwords.words("english")
|
| 22 |
+
porter = PorterStemmer()
|
| 23 |
+
return STOPWORDS, porter
|
| 24 |
+
|
| 25 |
+
def preprocess(text, stopwords):
|
| 26 |
+
"""Conditional preprocessing on our text unique to our task."""
|
| 27 |
+
# Lower
|
| 28 |
+
text = text.lower()
|
| 29 |
+
|
| 30 |
+
# Remove stopwords
|
| 31 |
+
pattern = re.compile(r"\b(" + r"|".join(stopwords) + r")\b\s*")
|
| 32 |
+
text = pattern.sub("", text)
|
| 33 |
+
|
| 34 |
+
# Remove words in paranthesis
|
| 35 |
+
text = re.sub(r"\([^)]*\)", "", text)
|
| 36 |
+
|
| 37 |
+
# Spacing and filters
|
| 38 |
+
text = re.sub(r"([-;;.,!?<=>])", r" \1 ", text)
|
| 39 |
+
text = re.sub("[^A-Za-z0-9]+", " ", text) # remove non alphanumeric chars
|
| 40 |
+
text = re.sub(" +", " ", text) # remove multiple spaces
|
| 41 |
+
text = text.strip()
|
| 42 |
+
|
| 43 |
+
return text
|
| 44 |
+
|
| 45 |
+
def spacy_function(abstract):
|
| 46 |
+
|
| 47 |
+
# setup English sentence parser
|
| 48 |
+
nlp = English()
|
| 49 |
+
|
| 50 |
+
# create sentence splitting pipeline object
|
| 51 |
+
sentencizer = nlp.create_pipe("sentencizer")
|
| 52 |
+
|
| 53 |
+
# add sentence splitting pipeline object to sentence parser
|
| 54 |
+
nlp.add_pipe('sentencizer')
|
| 55 |
+
|
| 56 |
+
# create "doc" of parsed sequences, change index for a different abstract
|
| 57 |
+
doc = nlp(abstract)
|
| 58 |
+
|
| 59 |
+
# return detected sentences from doc in string type (not spaCy token type)
|
| 60 |
+
abstract_lines = [str(sent) for sent in list(doc.sents)]
|
| 61 |
+
|
| 62 |
+
return abstract_lines
|
| 63 |
+
|
| 64 |
+
# ---------------------------------------------------------------------------------------------------------------------------
|
| 65 |
+
|
| 66 |
+
def model_prediction(model, dataloader):
|
| 67 |
+
"""Prediction step."""
|
| 68 |
+
# Set model to eval mode
|
| 69 |
+
model.eval()
|
| 70 |
+
y_trues, y_probs = [], []
|
| 71 |
+
# Iterate over val batches
|
| 72 |
+
for i, batch in enumerate(dataloader):
|
| 73 |
+
# Forward pass w/ inputs
|
| 74 |
+
# batch = [item.to(.device) for item in batch] # Set device
|
| 75 |
+
inputs = batch
|
| 76 |
+
z = model(inputs)
|
| 77 |
+
# Store outputs
|
| 78 |
+
y_prob = F.softmax(z, dim=1).detach().cpu().numpy()
|
| 79 |
+
y_probs.extend(y_prob)
|
| 80 |
+
return np.vstack(y_probs)
|
| 81 |
+
|
| 82 |
+
# ---------------------------------------------------------------------------------------------------------------------------
|
| 83 |
+
|
| 84 |
+
def make_skimlit_predictions(text, model, tokenizer, label_encoder): # embedding path
|
| 85 |
+
# getting all lines seprated from abstract
|
| 86 |
+
abstract_lines = list()
|
| 87 |
+
abstract_lines = spacy_function(text)
|
| 88 |
+
|
| 89 |
+
# Get total number of lines
|
| 90 |
+
total_lines_in_sample = len(abstract_lines)
|
| 91 |
+
|
| 92 |
+
# Go through each line in abstract and create a list of dictionaries containing features for each line
|
| 93 |
+
sample_lines = []
|
| 94 |
+
for i, line in enumerate(abstract_lines):
|
| 95 |
+
sample_dict = {}
|
| 96 |
+
sample_dict["text"] = str(line)
|
| 97 |
+
sample_dict["line_number"] = i
|
| 98 |
+
sample_dict["total_lines"] = total_lines_in_sample - 1
|
| 99 |
+
sample_lines.append(sample_dict)
|
| 100 |
+
|
| 101 |
+
# converting sample line list into pandas Dataframe
|
| 102 |
+
df = pd.DataFrame(sample_lines)
|
| 103 |
+
|
| 104 |
+
# getting stopword
|
| 105 |
+
STOPWORDS, porter = download_stopwords()
|
| 106 |
+
|
| 107 |
+
# applying preprocessing function to lines
|
| 108 |
+
df.text = df.text.apply(lambda x: preprocess(x, STOPWORDS))
|
| 109 |
+
|
| 110 |
+
# converting texts into numberical sequences
|
| 111 |
+
text_seq = tokenizer.texts_to_sequences(texts=df['text'])
|
| 112 |
+
|
| 113 |
+
# creating Dataset
|
| 114 |
+
dataset = SkimlitDataset(text_seq=text_seq, line_num=df['line_number'], total_line=df['total_lines'])
|
| 115 |
+
|
| 116 |
+
# creating dataloader
|
| 117 |
+
dataloader = dataset.create_dataloader(batch_size=2)
|
| 118 |
+
|
| 119 |
+
# Preparing embedings
|
| 120 |
+
# embedding_matrix = get_embeddings(embeding_path, tokenizer, 300)
|
| 121 |
+
|
| 122 |
+
# creating model
|
| 123 |
+
# model = SkimlitModel(embedding_dim=300, vocab_size=len(tokenizer), hidden_dim=128, n_layers=3, linear_output=128, num_classes=len(label_encoder), pretrained_embeddings=embedding_matrix)
|
| 124 |
+
|
| 125 |
+
# loading model weight
|
| 126 |
+
# model.load_state_dict(torch.load('/content/drive/MyDrive/Datasets/SkimLit/skimlit-pytorch-1/skimlit-model-final-1.pt', map_location='cpu'))
|
| 127 |
+
|
| 128 |
+
# setting model into evaluation mode
|
| 129 |
+
model.eval()
|
| 130 |
+
|
| 131 |
+
# getting predictions
|
| 132 |
+
y_pred = model_prediction(model, dataloader)
|
| 133 |
+
|
| 134 |
+
# converting predictions into label class
|
| 135 |
+
pred = y_pred.argmax(axis=1)
|
| 136 |
+
pred = label_encoder.decode(pred)
|
| 137 |
+
|
| 138 |
+
return abstract_lines, pred
|