File size: 11,237 Bytes
7c2596c 4e72327 7c2596c 4e72327 7c2596c 4e72327 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import gradio as gr
import time
import datetime
from sentence_transformers import SentenceTransformer
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
import traceback
from langchain.text_splitter import RecursiveCharacterTextSplitter
import io
# Configuration
EMBEDDING_MODELS = {
"sentence-transformers/all-MiniLM-L6-v2": "MiniLM (Multilingual)",
"ai-forever/FRIDA": "FRIDA (RU-EN)",
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2": "Multilingual MiniLM",
"cointegrated/rubert-tiny2": "RuBERT Tiny",
"ai-forever/sbert_large_nlu_ru": "Russian SBERT Large"
}
CHUNK_SIZE = 1024
CHUNK_OVERLAP = 200
TOP_K_RESULTS = 4
OUTPUT_FILENAME = "rag_embedding_test_results.txt"
# Global storage
embeddings_cache = {}
document_chunks = []
current_document = ""
def chunk_document(text):
"""Split document into chunks using RecursiveCharacterTextSplitter"""
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=CHUNK_SIZE,
chunk_overlap=CHUNK_OVERLAP,
length_function=len,
)
chunks = text_splitter.split_text(text)
return [chunk for chunk in chunks if len(chunk.strip()) > 50]
def test_single_model(model_name, chunks, question):
"""Test embedding with a single model"""
try:
start_time = time.time()
# Load model
model = SentenceTransformer(model_name)
load_time = time.time() - start_time
# Create embeddings
embed_start = time.time()
chunk_embeddings = model.encode(chunks, show_progress_bar=False)
question_embedding = model.encode([question], show_progress_bar=False)
embed_time = time.time() - embed_start
# Calculate similarities
similarities = cosine_similarity(question_embedding, chunk_embeddings)[0]
# Get top K results
top_indices = np.argsort(similarities)[-TOP_K_RESULTS:][::-1]
total_time = time.time() - start_time
results = {
'status': 'success',
'total_time': total_time,
'load_time': load_time,
'embed_time': embed_time,
'top_chunks': [
{
'index': idx,
'score': similarities[idx],
'text': chunks[idx]
}
for idx in top_indices
]
}
return results
except Exception as e:
return {
'status': 'failed',
'error': str(e),
'traceback': traceback.format_exc()
}
def process_embeddings(document_text, progress=gr.Progress()):
"""Process document with all embedding models"""
global embeddings_cache, document_chunks, current_document
if not document_text.strip():
return "β Please provide document text first!"
current_document = document_text
# Chunk document
progress(0.1, desc="Chunking document...")
document_chunks = chunk_document(document_text)
if not document_chunks:
return "β No valid chunks created. Please provide longer text."
embeddings_cache = {}
total_models = len(EMBEDDING_MODELS)
progress(0.2, desc=f"Processing {len(document_chunks)} chunks with {total_models} models...")
# Process each model
for i, (model_name, display_name) in enumerate(EMBEDDING_MODELS.items()):
progress(0.2 + (0.7 * i / total_models), desc=f"Testing {display_name}...")
# This is just preparation - we'll process on query
embeddings_cache[model_name] = {
'processed': False,
'display_name': display_name
}
progress(1.0, desc="Ready for testing!")
return f"β
Document processed successfully!\n\nπ **Stats:**\n- Total chunks: {len(document_chunks)}\n- Chunk size: {CHUNK_SIZE}\n- Chunk overlap: {CHUNK_OVERLAP}\n- Models ready: {len(EMBEDDING_MODELS)}\n\nπ **Now ask a question to compare embedding models!**"
def compare_embeddings(question, progress=gr.Progress()):
"""Compare all models for a given question"""
global embeddings_cache, document_chunks
if not question.strip():
return "β Please enter a question!", ""
if not document_chunks:
return "β Please process a document first using 'Start Embedding' button!", ""
results = {}
total_models = len(EMBEDDING_MODELS)
# Test each model
for i, (model_name, display_name) in enumerate(EMBEDDING_MODELS.items()):
progress(i / total_models, desc=f"Testing {display_name}...")
result = test_single_model(model_name, document_chunks, question)
results[model_name] = result
results[model_name]['display_name'] = display_name
progress(1.0, desc="Comparison complete!")
# Format results for display
display_results = format_comparison_results(results, question)
# Generate downloadable report
report_content = generate_report(results, question)
return display_results, report_content
def format_comparison_results(results, question):
"""Format results for Gradio display"""
output = f"# π Embedding Model Comparison\n\n"
output += f"**Question:** {question}\n\n"
output += f"**Document chunks:** {len(document_chunks)}\n\n"
output += "---\n\n"
for model_name, result in results.items():
display_name = result['display_name']
output += f"## π€ {display_name}\n\n"
if result['status'] == 'success':
output += f"β
**Success** ({result['total_time']:.2f}s)\n\n"
output += "**Top Results:**\n\n"
for i, chunk in enumerate(result['top_chunks'], 1):
score = chunk['score']
text_preview = chunk['text'][:200] + "..." if len(chunk['text']) > 200 else chunk['text']
output += f"**{i}. [{score:.3f}]** Chunk #{chunk['index']}\n"
output += f"```\n{text_preview}\n```\n\n"
else:
output += f"β **Failed:** {result['error']}\n\n"
output += "---\n\n"
return output
def generate_report(results, question):
"""Generate downloadable text report"""
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
report = "==========================================\n"
report += "RAG EMBEDDING MODEL TEST RESULTS\n"
report += "==========================================\n"
report += f"Date: {timestamp}\n"
report += f"Question: {question}\n"
report += f"Document chunks: {len(document_chunks)}\n\n"
report += "Settings:\n"
report += f"- Chunk Size: {CHUNK_SIZE}\n"
report += f"- Chunk Overlap: {CHUNK_OVERLAP}\n"
report += f"- Splitter: RecursiveCharacterTextSplitter\n"
report += f"- Top-K Results: {TOP_K_RESULTS}\n\n"
report += "==========================================\n"
for model_name, result in results.items():
display_name = result['display_name']
report += f"MODEL: {display_name}\n"
if result['status'] == 'success':
report += f"Status: β
Success ({result['total_time']:.2f}s)\n"
report += "Top Results:\n"
for chunk in result['top_chunks']:
score = chunk['score']
text = chunk['text'].replace('\n', ' ')
text_preview = text[:100] + "..." if len(text) > 100 else text
report += f"[{score:.3f}] Chunk #{chunk['index']}: \"{text_preview}\"\n"
else:
report += f"Status: β Failed - {result['error']}\n"
report += "\n" + "="*40 + "\n"
return report
def load_file(file):
"""Load content from uploaded file"""
if file is None:
return ""
try:
content = file.read()
if isinstance(content, bytes):
content = content.decode('utf-8')
return content
except Exception as e:
return f"Error loading file: {str(e)}"
# Create Gradio interface
with gr.Blocks(title="RAG Embedding Model Tester", theme=gr.themes.Soft()) as demo:
gr.Markdown("# π§ͺ RAG Embedding Model Tester")
gr.Markdown("Test and compare different embedding models for RAG pipelines. Focus on relevance quality assessment.")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## π Document Input")
document_input = gr.Textbox(
lines=15,
placeholder="Paste your document text here (Russian or English)...",
label="Document Text",
max_lines=20
)
file_input = gr.File(
file_types=[".txt", ".md"],
label="Or Upload Text File"
)
# Load file content to text box
file_input.change(
fn=load_file,
inputs=file_input,
outputs=document_input
)
embed_btn = gr.Button("π Start Embedding Process", variant="primary", size="lg")
embed_status = gr.Textbox(label="Processing Status", lines=8)
with gr.Column(scale=2):
gr.Markdown("## β Question & Comparison")
question_input = gr.Textbox(
placeholder="What question do you want to ask about the document?",
label="Your Question",
lines=2
)
compare_btn = gr.Button("π Compare All Models", variant="secondary", size="lg")
results_display = gr.Markdown(label="Comparison Results")
gr.Markdown("## π₯ Download Results")
report_download = gr.File(label="Download Test Report")
# Model info
with gr.Row():
gr.Markdown(f"""
## π€ Models to Test:
{', '.join([f"**{name}**" for name in EMBEDDING_MODELS.values()])}
## βοΈ Settings:
- **Chunk Size:** {CHUNK_SIZE} characters
- **Chunk Overlap:** {CHUNK_OVERLAP} characters
- **Top Results:** {TOP_K_RESULTS} chunks per model
- **Splitter:** RecursiveCharacterTextSplitter
""")
# Event handlers
embed_btn.click(
fn=process_embeddings,
inputs=document_input,
outputs=embed_status
)
def compare_and_download(question):
results_text, report_content = compare_embeddings(question)
# Create downloadable file
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"rag_test_{timestamp}.txt"
# Save report to file-like object
report_file = io.StringIO(report_content)
report_file.name = filename
return results_text, gr.File.update(value=report_file.getvalue(), visible=True)
compare_btn.click(
fn=compare_and_download,
inputs=question_input,
outputs=[results_display, report_download]
)
if __name__ == "__main__":
demo.launch() |