
Preprint

MINIGPT-V2: LARGE LANGUAGE MODEL AS A
UNIFIED INTERFACE FOR VISION-LANGUAGE MULTI-
TASK LEARNING

Jun Chen1,2∗ Deyao Zhu1 Xiaoqian Shen1 Xiang Li1 Zechun Liu2 Pengchuan Zhang2

Raghuraman Krishnamoorthi2 Vikas Chandra2 Yunyang Xiong2† Mohamed Elhoseiny1†

1King Abdullah University of Science and Technology (KAUST)
2Meta AI Research

ABSTRACT

Large language models have shown their remarkable capabilities as a general in-
terface for various language-related applications. Motivated by this, we target
to build a unified interface for completing many vision-language tasks includ-
ing image description, visual question answering, and visual grounding, among
others. The challenge is to use a single model for performing diverse vision-
language tasks effectively with simple multi-modal instructions. Towards this
objective, we introduce MiniGPT-v2, a model that can be treated as a unified
interface for better handling various vision-language tasks. We propose using
unique identifiers for different tasks when training the model. These identifiers
enable our model to better distinguish each task instruction effortlessly and also
improve the model learning efficiency for each task. After the three-stage train-
ing, the experimental results show that MiniGPT-v2 achieves strong performance
on many visual question-answering and visual grounding benchmarks compared
to other vision-language generalist models. Our model and codes are available at
https://minigpt-v2.github.io/.

1 INTRODUCTION

Multi-modal Large Language Models (LLMs) have emerged as an exciting research topic with a rich
set of applications in vision-language community, such as visual AI assistant, image captioning, vi-
sual question answering (VQA), and referring expression comprehension (REC). A key feature of
multimodal large language models is that they can inherit advanced capabilities (e.g., logical reason-
ing, common sense, and strong language expression) from the LLMs (OpenAI, 2022; Touvron et al.,
2023a;b; Chiang et al., 2023). When tuned with proper vision-language instructions, multi-modal
LLMs, specifically vision-language models, demonstrate strong capabilities such as producing de-
tailed image descriptions, generating code, localizing the visual objects in the image, and even
performing multi-modal reasoning to better answer complicated visual questions (Zhu et al., 2023b;
Liu et al., 2023b; Ye et al., 2023; Wang et al., 2023; Chen et al., 2023b; Dai et al., 2023; Zhu et al.,
2023a; Chen et al., 2023a; Zhuge et al., 2023). This evolution of LLMs enables interactions of visual
and language inputs across communication with individuals and has been shown quite effective for
building visual chatbots.

However, learning to perform multiple vision-language tasks effectively and formulating their corre-
sponding multi-modal instructions present considerable challenges due to the complexities inherent
among different tasks. For instance, given a user input “tell me the location of a person”, there
are many ways to interpret and respond based on the specific task. In the context of the referring
expression comprehension task, it can be answered with one bounding box location of the person.
For the visual question-answering task, the model might describe their spatial location using human
natural language. For the person detection task, the model might identify every spatial location of
each human in a given image. To alleviate this issue and towards a unified approach, we propose
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Figure 1: Our MiniGPT-v2 achieves state-of-the-art performances on a broad range of vision-
language tasks compared with other generalist models.

a task-oriented instruction training scheme to reduce the multi-modal instructional ambiguity, and
a vision-language model, MiniGPT-v2. Specifically, we provide a unique task identifier token for
each task. For example, we provide a [vqa] identifier token for training all the data samples from the
visual question answering tasks. In total, we provide six different task identifiers during the model
training stages.

Our model, MiniGPT-v2, has a simple architecture design. It directly takes the visual tokens from
a ViT vision encoder (Fang et al., 2022) and project them into the feature space of a large language
model (Touvron et al., 2023b). For better visual perception, we utilize higher-resolution images
(448x448) during training. But this will result in a larger number of visual tokens. To make the
model training more efficient, we concatenate every four neighboring visual tokens into a single
token, reducing the total number by 75%. Additionally, we utilize a three-stage training strategy to
effectively train our model with a mixture of weakly-labeled, fine-grained image-text datasets, and
multi-modal instructional datasets, with different training focus at each stage.

To evaluate the performance of our model, we conducted extensive experiments on diverse vision-
language tasks, including (detailed) image/grounded captioning, vision question answering, and
visual grounding. The results demonstrate that our MiniGPT-v2 can achieve SOTA or comparable
performance on diverse benchmarks compared to previous vision-language generalist models, such
as MiniGPT-4 (Zhu et al., 2023b), InstructBLIP (Dai et al., 2023), LLaVA (Liu et al., 2023b) and
Shikra (Chen et al., 2023b). For example, our MiniGPT-v2 outperforms MiniGPT-4 by 21.3%,
InstructBLIP by 11.3%, and LLaVA by 11.7% on the VSR benchmark (Liu et al., 2023a), and it
also performs better than the previously established strong baseline, Shikra, in most validations
on RefCOCO, RefCOCO+, and RefCOCOg. Our model establishes new state-of-the-art results on
these benchmarks among vision-language generalist models, shown in Fig. 1.

2 RELATED WORK

We briefly review relevant works on advanced large language models and multi-modal LLMs for
visual aligning.

Advanced Large Language Models (LLMs). Early-stage models such as GPT-2 (Radford et al.,
2019) and BERT (Devlin et al., 2018) are foundation models trained on web-scale text datasets,
marking a breakthrough in the NLP field. Following the success of foundation models, LLMs with
higher capacity and increased training data are developed, including GPT-3 (Brown et al., 2020),
Megatron-turing NLG (Smith et al., 2022), PaLM (Chowdhery et al., 2022), Gopher (Rae et al.,
2021), Chinchilla (Hoffmann et al., 2022), OPT (Zhang et al., 2022), and BLOOM (Scao et al.,
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2022). Most recently, the efforts have been focused on refining LLMs to work effectively with
human instruction and feedback. Representative works in this direction are InstructGPT (Ouyang
et al., 2022) and ChatGPT (OpenAI, 2022), which demonstrate strong capabilities such as answering
a diverse range of language questions, engaging in conversations with humans, and learning to
perform complex tasks like writing refinement and coding assistant.

Concurrent with these advancements of LLMs is the rise of LLaMA (Touvron et al., 2023a) language
models. To enable human instruction following abilities similar to ChatGPT, some works attempt to
finetune the LLaMA model with additional high-quality instruction datasets (sha, 2023). Examples
of these models include Alpaca (Taori et al., 2023), Vicuna (Chiang et al., 2023), and MPT (Team,
2023). Some other open-sourced language models that learned from the human feedback data, such
as Falcon (Penedo et al., 2023) and LLaMA-2 (Touvron et al., 2023b), have also been introduced to
the NLP community with impressive performance.

Visual Aligning with LLMs. With the remarkable generalization abilities of LLMs, interesting
studies have extended LLMs to multi-modal domains by aligning visual inputs with LLMs. Early
works such as VisualGPT (Chen et al., 2022) and Frozen (Tsimpoukelli et al., 2021) used pre-trained
language models to improve vision-language models on image captioning and visual question an-
swering. This initial exploration paved the way for subsequent vision-language research such as
Flamingo (Alayrac et al., 2022) and BLIP-2 (Li et al., 2023a). More recently, GPT-4 has been re-
leased and demonstrates many advanced multi-modal abilities, e.g., generating website code based
on handwritten text instructions. Those demonstrated capabilities inspired other vision-language
LLMs, including MiniGPT-4 (Zhu et al., 2023b) and LLaVA (Liu et al., 2023b), which align the
image inputs with a large language model, Vicuna Chiang et al. (2023), using proper instructional
tuning. These vision-language models also showcase many advanced multi-modal capabilities af-
ter the alignment. Recent works, such as Vision-LLM (Wang et al., 2023), Kosmos-2 (Peng et al.,
2023), Shikra (Chen et al., 2023b), and our concurrent work, Qwen-VL (Bai et al., 2023), also
demonstrate that multi-model LLMs models can also perform visual grounding by generating the
text format of bounding boxes through language model.

3 METHOD
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Figure 2: Architecture of MiniGPT-v2. The
model takes a ViT visual backbone, which re-
mains frozen during all training phases. We con-
catenate four adjacent visual output tokens from
ViT backbone and project them into LLaMA-2
language model space via a linear projection layer.

We start by introducing our vision-language
model, MiniGPT-v2, then discuss the basic idea
of a multi-task instruction template with task
identifiers for training, and finally adapt our
task identifier idea to achieve task-oriented in-
struction tuning.

3.1 MODEL ARCHITECTURE

Our proposed model architecture, MiniGPT-v2,
is shown in Fig. 2. It consists of three com-
ponents: a visual backbone, a linear projection
layer, and a large language model. We describe
each component as follows:

Visual backbone. MiniGPT-v2 adapts the
EVA (Fang et al., 2022) as our visual backbone
model backbone. We freeze the visual back-
bone during the entire model training. We train
our model with the image resolution 448x448,
and we interpolate the positional encoding to
scale with a higher image resolution.

Linear projection layer. We aim to project all the visual tokens from the frozen vision backbone
into the language model space. However, for higher-resolution images such as 448x448, projecting
all the image tokens results in a very long-sequence input (e.g., 1024 tokens) and significantly lowers
the training and inference efficiency. Hence, we simply concatenate 4 adjacent visual tokens in the
embedding space and project them together into one single embedding in the same feature space of
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the large language model, thus reducing the number of visual input tokens by 4 times. With this
operation, our MiniGPT-v2 can process high-resolution images much more efficiently during the
training and inference stage.

Large language model. MiniGPT-v2 adopts the open-sourced LLaMA2-chat (7B) (Touvron et al.,
2023b) as the language model backbone. In our work, the language model is treated as a unified
interface for various vision-language inputs. We directly rely on the LLaMA-2 language tokens to
perform various vision-language tasks. For the visual grounding tasks that necessitate the genera-
tion of spatial locations, we directly ask the language model to produce textual representations of
bounding boxes to denote their spatial positions.

3.2 MULTI-TASK INSTRUCTION TEMPLATE

When training a single unified model for multiple different tasks such as visual question answering,
image caption, referring expression, grounded image caption, and region identification, the multi-
modal model might fail to distinguish each task by just aligning visual tokens to language models.
For instance, when you ask “Tell me the spatial location of the person wearing a red jacket?”, the
model can either respond you the location in a bounding box format (e.g., < Xleft >< Ytop ><
Xright >< Ybottom >) or describe the object location using natural language (e.g., upper right
corner). To reduce such ambiguity and make each task easily distinguishable, we introduce task-
specific tokens in our designed multi-task instruction template for training. We now describe our
multi-task instruction template in more details.

General input format. We follow the LLaMA-2 conversation template design and adapt it for the
multi-modal instructional template. The template is denoted as follows,

[INST] <Img> < ImageFeature> </Img> [Task Identifier] Instruction [/INST]

In this template, [INST] is considered as the user role, and [/INST] is considered as the assistant
role. We structure the user input into three parts. The first part is the image features, the second part
is the task identifier token, and the third part is the instruction input.

Task identifier tokens. Our model takes a distinct identifier for each task to reduce the ambiguity
across various tasks. As illustrated in Table 1, we have proposed six different task identifiers for
visual question answering, image caption, grounded image captioning, referring expression com-
prehension, referring expression generation, and phrase parsing and grounding respectively. For
vision-irrelevant instructions, our model does not use any task identifier token.

Tasks VQA Caption Grounded Caption REC REG Object Parsing and Grounding
Identifiers [vqa] [caption] [grounding] [refer] [identify] [detection]

Table 1: Task identifier tokens for 6 different tasks, including visual question answering, image
captioning, grounded image captioning, referring expression comprehension (REC), referring ex-
pression generation (REG), and object parsing and grounding (where the model extracts objects
from the input text and determines their bounding box locations).

Spatial location representation. For tasks such as referring expression comprehension (REC), re-
ferring expression generation (REG), and grounded image captioning, our model is required to iden-
tify the spatial location of the referred objects accurately. We represent the spatial location through
the textual formatting of bounding boxes in our setting, specifically: “{< Xleft >< Ytop ><
Xright >< Ybottom >}”. Coordinates for X and Y are represented by integer values normalized in
the range [0,100]. < Xleft > and < Ytop > denote the x and y coordinate top-left corner of the
generated bounding box, and < Xright > and < Ybottom > denote the x and y coordinates of the
bottom-right corner.

3.3 MULTI-TASK INSTRUCTION TRAINING

We now adapt our designed multi-task instruction template for instruction training. The basic idea
is to take instruction with task-specific identifier token as input for task-oriented instruction train-
ing of MiniGPT-v2. When input instructions have task identifier tokens, our model will become
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more prone to multiple-task understanding during training. We train our model with task iden-
tifier instructions for better visual aligment in three stages. The first stage is to help MiniGPT-v2
build broad vision-language knowledge through many weakly-labeled image-text datasets, and high-
quality fine-grained vision-language annotation datasets as well (where we will assign a high data
sampling ratio for weakly-labeled image-text datasets). The second stage is to improve the model
with only fine-grained data for multiple tasks. The third stage is to finetune our model with more
multi-modal instruction and language datasets for answering diverse multi-modal instructions better
and behaving as a multi-modal chatbot. The datasets used for training at each stage are listed in
Table 2.

Data types Dataset Stage 1 Stage 2 Stage 3

Weakly-labeled GRIT-20M (REC and REG), LAION, CC3M, SBU ✓ ✗ ✗
Grounded caption GRIT-20M ✓ ✗ ✗
Caption COCO caption, Text Captions ✓ ✓ ✓
REC RefCOCO, RefCOCO+, RefCOCOg, Visual Genome ✓ ✓ ✓
REG RefCOCO, RefCOCO+, RefCOCOg ✓ ✓ ✓
VQA GQA, VQAv2, OCR-VQA, OK-VQA, AOK-VQA ✓ ✓ ✓
Multimodal instruction LLaVA dataset, Flickr30k, Multi-task conversation ✗ ✗ ✓
Langauge dataset Unnatural Instructions ✗ ✗ ✓

Table 2: The training datasets used for our model three-stage training.

Stage 1: Pretraining. To have broad vision-language knowledge, our model is trained on a mix of
weakly-labeled and fine-grained datasets. We give a high sampling ratio for weakly-labeled datasets
to gain more diverse knowledge in the first-stage.

For the weakly-labeled datasets, we use LAION (Schuhmann et al., 2021), CC3M (Sharma et al.,
2018), SBU (Ordonez et al., 2011), and GRIT-20M from Kosmos v2 (Peng et al., 2023) that built
the dataset for referring expression comprehension (REC), referring expression generation (REG),
and grounded image captioning.

For fine-grained datasets, we use datasets like COCO caption (Lin et al., 2014) and Text Cap-
tions (Sidorov et al., 2020) for image captioning, RefCOCO (Kazemzadeh et al., 2014), Ref-
COCO+ (Yu et al., 2016), and RefCOCOg (Mao et al., 2016) for REC. For REG, we restructured
the data from ReferCOCO and its variants, reversing the order from phrase → bounding boxes to
bounding boxes → phrase. For VQA datasets, our training takes a variety of datasets, such as
GQA (Hudson & Manning, 2019), VQA-v2 (Goyal et al., 2017), OCR-VQA (Mishra et al., 2019),
OK-VQA (Marino et al., 2019), and AOK-VQA (Schwenk et al., 2022).

Stage 2: Multi-task training. To improve the performance of MiniGPT-v2 on each task, we only fo-
cus on using fine-grained datasets to train our model at this stage. We exclude the weakly-supervised
datasets such as GRIT-20M and LAION from stage-1 and update the data sampling ratio according
to the frequency of each task. This strategy enables our model to prioritize high-quality aligned
image-text data for superior performance across various tasks.

Stage 3: Multi-modal instruction tuning. Subsequently, we focus on tuning our model with more
multi-modal instruction datasets and enhancing its conversation ability as a chatbot. We continue
using the datasets from the second stage and add instructional datasets, including LLaVA (Liu et al.,
2023b), Flickr30k dataset (Plummer et al., 2015), our constructed mixing multi-task dataset, and the
language dataset, Unnatural Instruction (Honovich et al., 2022). We give a lower data sampling ratio
for the fine-grained datasets from stage-2 and a higher data sampling ratio for the new instruction
datasets.

– LLaVA instruction data. We add the multi-modal instruction tuning datasets, including the
detailed descriptions and complex reasoning from LLaVA (Liu et al., 2023b), with 23k and 58k data
examples respectively.

– Flicker 30k. After the second-stage training, our MiniGPT-v2 can effectively generate the
grounded image caption. Nevertheless, these descriptions tend to be short and often cover very
few number of visual objects. This is because the GRIT-20M dataset from KOSMOS-v2 (Peng
et al., 2023) that our model was trained with, features a limited number of grounded visual objects
in each caption, and our model lacks proper multi-modal instruction tuning to teach it to recognize
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more visual objects. To improve this, we fine-tune our model using the Flickr30k dataset (Plummer
et al., 2015), which provides more contextual grounding of entities within its captions.

We prepare the Flickr30k dataset in two distinct formats for training our model to perform grounded
image caption and a new task “object parsing and grounding”:

1) Grounded image caption. We select captions with a minimum of five grounded phrases, contain-
ing around 2.5k samples, and we directly instruct the model to produce the grounded image caption.
e.g., a <p>wooden table</p>{<Xleft><Ytop><Xright><Ybottom>} in the center of the room.

2) Object parsing and grounding. This new task is to parse all the objects from an input caption
and then ground each object. To enable this, we use the task identifier[detection] to differentiate this
capability from other tasks. Also, we use Flickr30k to construct two types of instruction datasets:
caption→ grounded phrases and phrase → grounded phrase, each containing around 2.5k and 3k
samples. Then we prompt our model with the instruction: [detection] description, the model will
directly parse the objects from the input image description and also ground the objects into bounding
boxes.

– Mixing multi-task dataset. After extensive training with single-round instruction-answer pairs,
the model might not handle multiple tasks well during multi-round conversations since the context
becomes more complex. To alleviate this situation, we create a new multi-round conversation dataset
by mixing the data from different tasks. We include this dataset into our third-stage model training.

– Unnatural instruction. The conversation abilities of language model can be reduced after exten-
sive vision-language training. To fix this, we add the language dataset, Unnatural Instruction (Hon-
ovich et al., 2022) into our model’s third-stage training for helping recover the language generation
ability.

4 EXPERIMENTS

In this section, we present experimental settings and results. We primarily conduct experiments
on (detailed) image/grounded captioning, vision question answering, and visual grounding tasks,
including referring expression comprehension. We present both quantitative and qualitative results.

Implementation details. Throughout the entire training process, the visual backbone of MiniGPT-
v2 remains frozen. We focus on training the linear projection layer and efficient finetuning the
language model using LoRA (Hu et al., 2021). With LoRA, we finetune Wq and Wv via low-
rank adaptation. In our implementation, we set the rank, r = 64. We trained the model with an
image resolution of 448x448 during all stages. During each stage, we use our designed multi-modal
instructional templates for various vision-language tasks during the model training.

Training and hyperparameters. We use AdamW optimizer with a cosine learning rate scheduler
to train our model. In the initial stage, we train on 8xA100 GPUs for 400,000 steps with a global
batch size of 96 and an maximum learning rate of 1e-4. This stage takes around 90 hours. During
the second stage, the model is trained for 50,000 steps on 4xA100 GPUs with a maximum learning
rate of 1e-5, adopting a global batch size of 64, and this training stage lasts roughly 20 hours. For
the last stage, training is executed for another 35,000 steps on 4xA100 GPUs, using a global batch
size of 24 and this training stage took around 7 hours, maintaining the same maximum learning rate
of 1e-5.

4.1 QUANTITATIVE EVALUATION

Dataset and evaluation metrics. We evaluate our model across a range of VQA and visual ground-
ing benchmarks. For VQA benchmarks, we consider OKVQA (Schwenk et al., 2022), GQA (Hud-
son & Manning, 2019), visual spatial reasoning (VSR) (Liu et al., 2023a), IconVQA (Lu et al.,
2021), VizWiz (Gurari et al., 2018), HatefulMemes (HM) (Kiela et al., 2020), and TextVQA (Singh
et al., 2019). For visual grounding, we evaluate our model on RefCOCO (Kazemzadeh et al., 2014)
and RefCOCO+(Yu et al., 2016), and RefCOCOg(Mao et al., 2016) benchmarks.

To evaluate VQA benchmarks, we use an open-ended approach with a greedy decoding strategy.
We evaluate each VQA question with the following instruction template: “[vqa] question”. Follow-
ing the previous method (Dai et al., 2023), we evaluate the performance by matching the model’s
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Method Grounding OKVQA GQA VSR IconVQA VizWiz HM
(zero-shot) (zero-shot) (zero-shot) (zero-shot)

Flamingo-9B ✗ 44.7 - 31.8 - 28.8 57.0
BLIP-2 (13B) ✗ 45.9 41.0 50.9 40.6 19.6 53.7
InstructBLIP (13B) ✗ - 49.5 52.1 44.8 33.4 57.5
MiniGPT-4 (13B) ✗ 37.5 30.8 41.6 37.6 - -
LLaVA (13B) ✗ 54.4 41.3 51.2 43.0 - -
Shikra (13B) ✓ 47.2 - - - - -
Ours (7B) ✓ 56.9 60.3 60.6 47.7 32.9 58.2
Ours (7B)-chat ✓ 57.8 60.1 62.9 51.5 53.6 58.8

Table 3: Results on multiple VQA tasks. We report top-1 accuracy for each task. Grounding col-
umn indicates whether the model incorporates visual localization capability. The best performance
for each benchmark is indicated in bold.

Method Model types RefCOCO RefCOCO+ RefCOCOg Avgval test-A test-B val test-A test-B val test

UNINEXT Specialist models 92.64 94.33 91.46 85.24 89.63 79.79 88.73 89.37 88.90
G-DINO-L 90.56 93.19 88.24 82.75 88.95 75.92 86.13 87.02 86.60

VisionLLM-H

Generalist models

- 86.70 - - - - - - -
OFA-L 79.96 83.67 76.39 68.29 76.00 61.75 67.57 67.58 72.65
Shikra (7B) 87.01 90.61 80.24 81.60 87.36 72.12 82.27 82.19 82.93
Shikra (13B) 87.83 91.11 81.81 82.89 87.79 74.41 82.64 83.16 83.96
Ours (7B) 88.69 91.65 85.33 79.97 85.12 74.45 84.44 84.66 84.29
Ours (7B)-chat 88.06 91.29 84.30 79.58 85.52 73.32 84.19 84.31 83.70

Table 4: Results on referring expression comprehension tasks. Our MiniGPT-v2 outperforms
many VL-generalist models including VisionLLM (Wang et al., 2023), OFA (Wang et al., 2022) and
Shikra (Chen et al., 2023b) and reduces the accuracy gap comparing to specialist models including
UNINEXT (Yan et al., 2023) and G-DINO (Liu et al., 2023c).

response to the ground-truth and reporting top-1 accuracy. For visual grounding benchmarks, we
use the template “[refer] give me the location of Referring expression” for each referring expres-
sion comprehension question, and a predicted bounding box is considered as correct for reporting
accuracy if its IOU between prediction and ground-truth is higher than 0.5.

Visual question answering results. Table 3 presents our experimental results on multiple VQA
benchmarks. Our results compare favorably to baselines including MiniGPT-4 (Zhu et al., 2023b),
Shikra (Chen et al., 2023b), LLaVA (Liu et al., 2023b), and InstructBLIP (Dai et al., 2023) across
all the VQA tasks. For example, on QKVQA, our MiniGPT-v2 outperforms MiniGPT-4, Shikra,
LLaVA, and BLIP-2 by 20.3%, 10.6%, 3.4%, and 11.9%. These results indicate the strong visual
question answering capabilities of our model. Furthermore, we find that our MiniGPT-v2 (chat)
variant shows higher performance than the version trained after the second stage. On OKVQA, VSR,
IconVQA, VizWiz, and HM, MiniGPT-v2 (chat) outperforms MiniGPT-v2 by 0.9%, 2.3%, 4.2%,
20.7%, and 0.6%. We believe that the better performance can be attributed to the improved language
skills during the third-stage training, which is able to benefit visual question comprehension and
response, especially on VizWiz with 20.7% top-1 accuracy increase.

Referring expression comprehension results. Table 4 compares our model to baselines on
REC benchmarks. Our MiniGPT-v2 shows strong REC performance on RefCOCO, RefCOCO+,
and RefCOCOg, performing better than other vision-language generalist models. MiniGPT-
v2 outperforms OFA-L (Wang et al., 2022) by over 8% accuracy across all tasks of Ref-
COCO/RefCOCO+/RefCOCOg. Compared with a strong baseline, Shikra (13B) (Chen et al.,
2023b), our model still shows better results, e.g., 84.29% vs 83.96% accuracy in average. These
results provide direct evidence for the competing visual grounding capabilities of MiniGPT-v2. Al-
though our model underperforms specialist models, the promising performance indicates its growing
competence in visual grounding.

Ablation on task identifier. We conduct ablation studies on the effect of the task identifier on
the performance of MiniGPT-v2. We compare our model with the variant without using task iden-
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[identify] this 
{<35><45><65><70>} is 

a black chainring Cut slice of fruit cake on a 
plate with a fork and a 
cup of coffee with flowers 
in a vase

[grounding] please 
describe this image as 
detailed as possible

[refer] the right player's hat 

Who are the people on the 
right, on the left, and in the 
middle? 

The people in the image 
are:

* Barack Obama, the 
former President of the 
United States, is on the 
left side of the image.
* Joe Biden, the current 
President of the United 
States, is in the middle of 
the image.
* Donald Trump, the 
former President of the 
United States, is on the 
right side of the image.

The image depicts a large cave with a 
group of people painted on the walls. 
The people are engaged in various 
activities, such as hunting, gathering, 
and riding horses. There are several 
horses scattered throughout the scene, 
with some in the foreground and others 
in the background.

In addition to the people and horses, 
there are several other animals depicted 
in the cave, including a lion, a tiger, and 
a dinosaur. The cave is also adorned 
with various objects, such as a bow and 
arrows, a spear, and a shield.

Overall, the scene appears to be a 
vibrant and lively depiction of ancient 
life, showcasing the skills and activities 
of the people who lived in this cave.

Please describe this image as 
detailed as possible

[vqa] Which country does it 
come from? 

australia

a living room
a lamp
a spacious gray sofa
two wall paintings
shoes
a blanket 

[detection] The image 
showcases a living room 
featuring a lamp, a 
spacious gray sofa, two 
wall paintings, and shoes 
resting on a blanket

a) b) c)

d)

e)

f)

g)

Figure 3: Examples for various multi-modal capabilities of MiniGPT-v2. We showcase that our
model is capable of completing multiple tasks such as referring expression comprehension, referring
expression generation, detailed grounded image caption, visual question answering, detailed image
description, and directly parsing phrase and grounding from a given input text.

OKVQA GQA WizViz VSR IconVQA HM Average

Ours w/o task identifier 50.5 53.4 28.6 57.5 44.8 56.8 48.6
Ours 52.1 54.6 29.4 59.9 45.6 57.4 49.8

Table 5: Task identifier ablation study on VQA benchmarks. With task identifier during the model
training can overall improve VQA performances from multiple VQA benchmarks

tifiers on VQA benchmarks. Both models were trained on 4xA100 GPUs for 24 hours with an
equal number of training steps for multiple vision-language tasks. Results in Table 5 demonstrate
the performance on multiple VQA benchmarks and consistently show that token identifier training
benefits the overall performance of MiniGPT-v2. Specifically, our MiniGPT-v2 with task-oriented
instruction training achieves 1.2% top-1 accuracy improvement on average. These ablation results
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can validate the clear advantage of adding task identifier tokens and support the use of multi-task
identifiers for multi-task learning efficiency.

Method CHAIRI ↓ CHAIRS ↓ Len

MiniGPT-4 9.2 31.5 116.2
mPLUG-Owl 30.2 76.8 98.5
LLaVA 18.8 62.7 90.7
MultiModal-GPT 18.2 36.2 45.7
MiniGPT-v2 (long) 8.7 25.3 56.5
MiniGPT-v2 (grounded) 7.6 12.5 18.9
MiniGPT-v2 (short) 4.4 7.1 10.3

Table 6: Results on hallucination. We evaluate the
hallucination of MiniGPT-v2 with different instruc-
tional templates and output three versions of captions
for evaluation. For the “long” version, we use the
prompt generate a brief description of the given image.
For the “grounded” version, the instruction is [ground-
ing] describe this image in as detailed as possible. For
the “short” version, the prompt is [caption] briefly de-
scribe the image.

Hallucination. We measure the halluci-
nation of our model on image description
generation and compare the results with
other vision-language baselines, including
MiniGPT-4 (Zhu et al., 2023b), mPLUG-
Owl (Ye et al., 2023), LLaVA (Liu et al.,
2023b), and MultiModal-GPT (Gong
et al., 2023). Following the method-
ology from (Li et al., 2023b), we use
CHAIR (Rohrbach et al., 2018) to assess
hallucination at both object and sentence
levels. As shown in Table 6, we find
that our MiniGPT-v2 tends to generate the
image description with reduced halluci-
nation compared to other baselines. We
have evaluated three types of prompts in
MiniGPT-v2. First, we use the prompt
generate a brief description of the given
image without any specific task identifier
which tends to produce more detailed im-
age descriptions. Then we provide the instruction prompt [grounding] describe this image in as
detailed as possible for evaluating grounded image captions. Lastly, we prompt our model with
[caption] briefly describe the image. With these task identifiers, MiniGPT-v2 is able to produce a
variety of image descriptions with different levels of hallucination. As a result, all these three in-
struction variants have lower hallucination than our baseline, especially with the task specifiers of
[caption] and [grounding].

4.2 QUALITATIVE RESULTS

We now provide the qualitative results for a complementary understanding of our model’s multi-
modal capabilities. Some examples can be seen in Fig. 3. Specifically, we demonstrated various
abilities in the examples including a) object identification; b) detailed grounded image captioning;
c) visual question answering; d) referring expression comprehension; e) visual question answering
under task identifier; f) detailed image description; g) object parsing and grounding from an input
text. More qualitative results can be found in the Appendix. These results demonstrate that our
model has competing vision-language understanding capabilities. Moreover, notice that we train
our model only with a few thousand of instruction samples on object parsing and grounding tasks
at the third-stage, and our model can effectively follow the instructions and generalize on the new
task. This indicates that our model has the flexibility to adapt on many new tasks.

Note that our model still occasionally shows hallucinations when generating the image description or
visual grounding. e.g., our model may sometimes produce descriptions of non-existent visual objects
or generate inaccurate visual locations of grounded objects. We believe training with more high-
quality image-text aligned data and integrating with a stronger vision backbone or large language
model hold the potential for alleviating this issue.

5 CONCLUSION

In this paper, we introduce MiniGPT-v2, a multi-modal LLM that can serve as a unified interface
for various vision-language multi-tasking learning. To develop a single model capable of handling
multiple vision-language tasks, we propose using distinct identifiers for each task during the training
and inference. These identifiers help our model easily differentiate various tasks and also improve
learning efficiency. Our MiniGPT-v2 achieves state-of-the-art results across many visual question
answering and referring expression comprehension benchmarks. We also found that our model can
efficiently adapt to new vision-language tasks, which suggests that MiniGPT-v2 has many potential
applications in the vision-language community.
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A APPENDIX

In the supplementary, we provide more qualitative results that are generated from our model to
demonstrate the vision-language multi-tasking capabilities.

A.1 INSTRUCTION TEMPLATE FOR VARIOUS VISION-LANGUAGE TASKS

RefCOCO/RefCOCO+/RefCOCOg: [refer] give me the location of question

VizWiz: [vqa] Based on the image, respond to this question with a single word or phrase: question,
and reply ’unanswerable’ when the provided information is insufficient

Hateful Meme: [vqa] This is an image with: question written on it. Is it hateful? Answer:

VSR: [vqa] Based on the image, is this statement true or false? question

IconQA, GQA, OKVQA: [vqa] Based on the image, respond to this question with a single word
or phrase: question

A.2 ADDITIONAL QUALITATIVE RESULTS

To study how well our model is able to take visual input and answer questions based on task-oriented
identifier, we use our model to perform multiple vision-language tasks including grounded image
captioning in Fig. 4, Fig. 5, Fig. 6 and Fig. 7; Object parsing and grounding in Fig. 8, Fig. 9, Fig.
10 and Fig. 11; Referring expression comprehension in Fig. 12, Fig. 13, Fig. 14 and Fig. 15; Object
identification in Fig. 16, Fig. 17, Fig. 18 and Fig. 19.

For each task, we share 4 examples for showing the vision-language capabilities of our model. The
results in the demo provide direct evidence for the competing visual understanding capabilities of
MiniGPT-v2 on multiple vision-language tasks. For example, in the cases of grounded caption, our
model is able to give correct grounded image caption with detailed spatial locations of objects. In the
cases of identify, the model also generates our expected object names. MiniGPT-v2 can understand
the new scenes and follow the question identifier to respond. But we also need to note that our model
still has some hallucination e.g., In Fig. 6, several persons are not grounded accurately, and in Fig.
7, there does not exist a vase in the image.

Figure 4: Detail grounded image caption example.
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Figure 5: Detail grounded image caption example

Figure 6: Detail grounded image caption example
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Figure 7: Detail grounded image caption example

Figure 8: Object parsing and grounding example
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Figure 9: Object parsing and grounding example

Figure 10: Object parsing and grounding example
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Figure 11: Object parsing and grounding example

Figure 12: Referring expression comprehension example

Figure 13: Referring expression comprehension example
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Figure 14: Referring expression comprehension example

Figure 15: Referring expression comprehension example
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Figure 16: object identification example

Figure 17: object identification example

Figure 18: object identification example
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Figure 19: object identification example
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