Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| """ | |
| Copyright (c) 2022, salesforce.com, inc. | |
| All rights reserved. | |
| SPDX-License-Identifier: BSD-3-Clause | |
| For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
| """ | |
| import logging | |
| import torch | |
| from omegaconf import OmegaConf | |
| from minigpt4.common.registry import registry | |
| from minigpt4.models.base_model import BaseModel | |
| from minigpt4.models.minigpt_base import MiniGPTBase | |
| from minigpt4.models.minigpt4 import MiniGPT4 | |
| from minigpt4.models.minigpt_v2 import MiniGPTv2 | |
| from minigpt4.processors.base_processor import BaseProcessor | |
| __all__ = [ | |
| "load_model", | |
| "BaseModel", | |
| "MiniGPTBase", | |
| "MiniGPT4", | |
| "MiniGPTv2" | |
| ] | |
| def load_model(name, model_type, is_eval=False, device="cpu", checkpoint=None): | |
| """ | |
| Load supported models. | |
| To list all available models and types in registry: | |
| >>> from minigpt4.models import model_zoo | |
| >>> print(model_zoo) | |
| Args: | |
| name (str): name of the model. | |
| model_type (str): type of the model. | |
| is_eval (bool): whether the model is in eval mode. Default: False. | |
| device (str): device to use. Default: "cpu". | |
| checkpoint (str): path or to checkpoint. Default: None. | |
| Note that expecting the checkpoint to have the same keys in state_dict as the model. | |
| Returns: | |
| model (torch.nn.Module): model. | |
| """ | |
| model = registry.get_model_class(name).from_pretrained(model_type=model_type) | |
| if checkpoint is not None: | |
| model.load_checkpoint(checkpoint) | |
| if is_eval: | |
| model.eval() | |
| if device == "cpu": | |
| model = model.float() | |
| return model.to(device) | |
| def load_preprocess(config): | |
| """ | |
| Load preprocessor configs and construct preprocessors. | |
| If no preprocessor is specified, return BaseProcessor, which does not do any preprocessing. | |
| Args: | |
| config (dict): preprocessor configs. | |
| Returns: | |
| vis_processors (dict): preprocessors for visual inputs. | |
| txt_processors (dict): preprocessors for text inputs. | |
| Key is "train" or "eval" for processors used in training and evaluation respectively. | |
| """ | |
| def _build_proc_from_cfg(cfg): | |
| return ( | |
| registry.get_processor_class(cfg.name).from_config(cfg) | |
| if cfg is not None | |
| else BaseProcessor() | |
| ) | |
| vis_processors = dict() | |
| txt_processors = dict() | |
| vis_proc_cfg = config.get("vis_processor") | |
| txt_proc_cfg = config.get("text_processor") | |
| if vis_proc_cfg is not None: | |
| vis_train_cfg = vis_proc_cfg.get("train") | |
| vis_eval_cfg = vis_proc_cfg.get("eval") | |
| else: | |
| vis_train_cfg = None | |
| vis_eval_cfg = None | |
| vis_processors["train"] = _build_proc_from_cfg(vis_train_cfg) | |
| vis_processors["eval"] = _build_proc_from_cfg(vis_eval_cfg) | |
| if txt_proc_cfg is not None: | |
| txt_train_cfg = txt_proc_cfg.get("train") | |
| txt_eval_cfg = txt_proc_cfg.get("eval") | |
| else: | |
| txt_train_cfg = None | |
| txt_eval_cfg = None | |
| txt_processors["train"] = _build_proc_from_cfg(txt_train_cfg) | |
| txt_processors["eval"] = _build_proc_from_cfg(txt_eval_cfg) | |
| return vis_processors, txt_processors | |
| def load_model_and_preprocess(name, model_type, is_eval=False, device="cpu"): | |
| """ | |
| Load model and its related preprocessors. | |
| List all available models and types in registry: | |
| >>> from minigpt4.models import model_zoo | |
| >>> print(model_zoo) | |
| Args: | |
| name (str): name of the model. | |
| model_type (str): type of the model. | |
| is_eval (bool): whether the model is in eval mode. Default: False. | |
| device (str): device to use. Default: "cpu". | |
| Returns: | |
| model (torch.nn.Module): model. | |
| vis_processors (dict): preprocessors for visual inputs. | |
| txt_processors (dict): preprocessors for text inputs. | |
| """ | |
| model_cls = registry.get_model_class(name) | |
| # load model | |
| model = model_cls.from_pretrained(model_type=model_type) | |
| if is_eval: | |
| model.eval() | |
| # load preprocess | |
| cfg = OmegaConf.load(model_cls.default_config_path(model_type)) | |
| if cfg is not None: | |
| preprocess_cfg = cfg.preprocess | |
| vis_processors, txt_processors = load_preprocess(preprocess_cfg) | |
| else: | |
| vis_processors, txt_processors = None, None | |
| logging.info( | |
| f"""No default preprocess for model {name} ({model_type}). | |
| This can happen if the model is not finetuned on downstream datasets, | |
| or it is not intended for direct use without finetuning. | |
| """ | |
| ) | |
| if device == "cpu" or device == torch.device("cpu"): | |
| model = model.float() | |
| return model.to(device), vis_processors, txt_processors | |
| class ModelZoo: | |
| """ | |
| A utility class to create string representation of available model architectures and types. | |
| >>> from minigpt4.models import model_zoo | |
| >>> # list all available models | |
| >>> print(model_zoo) | |
| >>> # show total number of models | |
| >>> print(len(model_zoo)) | |
| """ | |
| def __init__(self) -> None: | |
| self.model_zoo = { | |
| k: list(v.PRETRAINED_MODEL_CONFIG_DICT.keys()) | |
| for k, v in registry.mapping["model_name_mapping"].items() | |
| } | |
| def __str__(self) -> str: | |
| return ( | |
| "=" * 50 | |
| + "\n" | |
| + f"{'Architectures':<30} {'Types'}\n" | |
| + "=" * 50 | |
| + "\n" | |
| + "\n".join( | |
| [ | |
| f"{name:<30} {', '.join(types)}" | |
| for name, types in self.model_zoo.items() | |
| ] | |
| ) | |
| ) | |
| def __iter__(self): | |
| return iter(self.model_zoo.items()) | |
| def __len__(self): | |
| return sum([len(v) for v in self.model_zoo.values()]) | |
| model_zoo = ModelZoo() | |