Spaces:
Runtime error
Runtime error
| """ | |
| Copyright (c) 2022, salesforce.com, inc. | |
| All rights reserved. | |
| SPDX-License-Identifier: BSD-3-Clause | |
| For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
| """ | |
| import gzip | |
| import logging | |
| import os | |
| import random as rnd | |
| import tarfile | |
| import zipfile | |
| import random | |
| from typing import List | |
| from tqdm import tqdm | |
| import decord | |
| from decord import VideoReader | |
| import webdataset as wds | |
| import numpy as np | |
| import torch | |
| from torch.utils.data.dataset import IterableDataset | |
| from minigpt4.common.registry import registry | |
| from minigpt4.datasets.datasets.base_dataset import ConcatDataset | |
| decord.bridge.set_bridge("torch") | |
| MAX_INT = registry.get("MAX_INT") | |
| class ChainDataset(wds.DataPipeline): | |
| r"""Dataset for chaining multiple :class:`DataPipeline` s. | |
| This class is useful to assemble different existing dataset streams. The | |
| chaining operation is done on-the-fly, so concatenating large-scale | |
| datasets with this class will be efficient. | |
| Args: | |
| datasets (iterable of IterableDataset): datasets to be chained together | |
| """ | |
| def __init__(self, datasets: List[wds.DataPipeline]) -> None: | |
| super().__init__() | |
| self.datasets = datasets | |
| self.prob = [] | |
| self.names = [] | |
| for dataset in self.datasets: | |
| if hasattr(dataset, 'name'): | |
| self.names.append(dataset.name) | |
| else: | |
| self.names.append('Unknown') | |
| if hasattr(dataset, 'sample_ratio'): | |
| self.prob.append(dataset.sample_ratio) | |
| else: | |
| self.prob.append(1) | |
| logging.info("One of the datapipeline doesn't define ratio and set to 1 automatically.") | |
| def __iter__(self): | |
| datastreams = [iter(dataset) for dataset in self.datasets] | |
| while True: | |
| select_datastream = random.choices(datastreams, weights=self.prob, k=1)[0] | |
| yield next(select_datastream) | |
| def apply_to_sample(f, sample): | |
| if len(sample) == 0: | |
| return {} | |
| def _apply(x): | |
| if torch.is_tensor(x): | |
| return f(x) | |
| elif isinstance(x, dict): | |
| return {key: _apply(value) for key, value in x.items()} | |
| elif isinstance(x, list): | |
| return [_apply(x) for x in x] | |
| else: | |
| return x | |
| return _apply(sample) | |
| def move_to_cuda(sample): | |
| def _move_to_cuda(tensor): | |
| return tensor.cuda() | |
| return apply_to_sample(_move_to_cuda, sample) | |
| def prepare_sample(samples, cuda_enabled=True): | |
| if cuda_enabled: | |
| samples = move_to_cuda(samples) | |
| # TODO fp16 support | |
| return samples | |
| def reorg_datasets_by_split(datasets): | |
| """ | |
| Organizes datasets by split. | |
| Args: | |
| datasets: dict of torch.utils.data.Dataset objects by name. | |
| Returns: | |
| Dict of datasets by split {split_name: List[Datasets]}. | |
| """ | |
| # if len(datasets) == 1: | |
| # return datasets[list(datasets.keys())[0]] | |
| # else: | |
| reorg_datasets = dict() | |
| # reorganize by split | |
| for _, dataset in datasets.items(): | |
| for split_name, dataset_split in dataset.items(): | |
| if split_name not in reorg_datasets: | |
| reorg_datasets[split_name] = [dataset_split] | |
| else: | |
| reorg_datasets[split_name].append(dataset_split) | |
| return reorg_datasets | |
| def concat_datasets(datasets): | |
| """ | |
| Concatenates multiple datasets into a single dataset. | |
| It supports may-style datasets and DataPipeline from WebDataset. Currently, does not support | |
| generic IterableDataset because it requires creating separate samplers. | |
| Now only supports conctenating training datasets and assuming validation and testing | |
| have only a single dataset. This is because metrics should not be computed on the concatenated | |
| datasets. | |
| Args: | |
| datasets: dict of torch.utils.data.Dataset objects by split. | |
| Returns: | |
| Dict of concatenated datasets by split, "train" is the concatenation of multiple datasets, | |
| "val" and "test" remain the same. | |
| If the input training datasets contain both map-style and DataPipeline datasets, returns | |
| a tuple, where the first element is a concatenated map-style dataset and the second | |
| element is a chained DataPipeline dataset. | |
| """ | |
| # concatenate datasets in the same split | |
| for split_name in datasets: | |
| if split_name != "train": | |
| assert ( | |
| len(datasets[split_name]) == 1 | |
| ), "Do not support multiple {} datasets.".format(split_name) | |
| datasets[split_name] = datasets[split_name][0] | |
| else: | |
| iterable_datasets, map_datasets = [], [] | |
| for dataset in datasets[split_name]: | |
| if isinstance(dataset, wds.DataPipeline): | |
| logging.info( | |
| "Dataset {} is IterableDataset, can't be concatenated.".format( | |
| dataset | |
| ) | |
| ) | |
| iterable_datasets.append(dataset) | |
| elif isinstance(dataset, IterableDataset): | |
| raise NotImplementedError( | |
| "Do not support concatenation of generic IterableDataset." | |
| ) | |
| else: | |
| map_datasets.append(dataset) | |
| # if len(iterable_datasets) > 0: | |
| # concatenate map-style datasets and iterable-style datasets separately | |
| if len(iterable_datasets) > 1: | |
| chained_datasets = ( | |
| ChainDataset(iterable_datasets) | |
| ) | |
| elif len(iterable_datasets) == 1: | |
| chained_datasets = iterable_datasets[0] | |
| else: | |
| chained_datasets = None | |
| concat_datasets = ( | |
| ConcatDataset(map_datasets) if len(map_datasets) > 0 else None | |
| ) | |
| train_datasets = concat_datasets, chained_datasets | |
| train_datasets = tuple([x for x in train_datasets if x is not None]) | |
| train_datasets = ( | |
| train_datasets[0] if len(train_datasets) == 1 else train_datasets | |
| ) | |
| datasets[split_name] = train_datasets | |
| return datasets | |