Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import argparse | |
| import os | |
| import random | |
| from collections import defaultdict | |
| import cv2 | |
| import re | |
| import numpy as np | |
| from PIL import Image | |
| import torch | |
| import html | |
| import gradio as gr | |
| import torchvision.transforms as T | |
| import torch.backends.cudnn as cudnn | |
| from minigpt4.common.config import Config | |
| from minigpt4.common.registry import registry | |
| from minigpt4.conversation.conversation import Conversation, SeparatorStyle, Chat | |
| # imports modules for registration | |
| from minigpt4.datasets.builders import * | |
| from minigpt4.models import * | |
| from minigpt4.processors import * | |
| from minigpt4.runners import * | |
| from minigpt4.tasks import * | |
| def parse_args(): | |
| parser = argparse.ArgumentParser(description="Demo") | |
| parser.add_argument("--cfg-path", default='eval_configs/minigptv2_eval.yaml', | |
| help="path to configuration file.") | |
| parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.") | |
| parser.add_argument( | |
| "--options", | |
| nargs="+", | |
| help="override some settings in the used config, the key-value pair " | |
| "in xxx=yyy format will be merged into config file (deprecate), " | |
| "change to --cfg-options instead.", | |
| ) | |
| args = parser.parse_args() | |
| return args | |
| random.seed(42) | |
| np.random.seed(42) | |
| torch.manual_seed(42) | |
| cudnn.benchmark = False | |
| cudnn.deterministic = True | |
| print('Initializing Chat') | |
| args = parse_args() | |
| cfg = Config(args) | |
| device = 'cuda:{}'.format(args.gpu_id) | |
| model_config = cfg.model_cfg | |
| model_config.device_8bit = args.gpu_id | |
| model_cls = registry.get_model_class(model_config.arch) | |
| model = model_cls.from_config(model_config).to(device) | |
| bounding_box_size = 100 | |
| vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train | |
| vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg) | |
| model = model.eval() | |
| CONV_VISION = Conversation( | |
| system="", | |
| roles=(r"<s>[INST] ", r" [/INST]"), | |
| messages=[], | |
| offset=2, | |
| sep_style=SeparatorStyle.SINGLE, | |
| sep="", | |
| ) | |
| def extract_substrings(string): | |
| # first check if there is no-finished bracket | |
| index = string.rfind('}') | |
| if index != -1: | |
| string = string[:index + 1] | |
| pattern = r'<p>(.*?)\}(?!<)' | |
| matches = re.findall(pattern, string) | |
| substrings = [match for match in matches] | |
| return substrings | |
| def is_overlapping(rect1, rect2): | |
| x1, y1, x2, y2 = rect1 | |
| x3, y3, x4, y4 = rect2 | |
| return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4) | |
| def computeIoU(bbox1, bbox2): | |
| x1, y1, x2, y2 = bbox1 | |
| x3, y3, x4, y4 = bbox2 | |
| intersection_x1 = max(x1, x3) | |
| intersection_y1 = max(y1, y3) | |
| intersection_x2 = min(x2, x4) | |
| intersection_y2 = min(y2, y4) | |
| intersection_area = max(0, intersection_x2 - intersection_x1 + 1) * max(0, intersection_y2 - intersection_y1 + 1) | |
| bbox1_area = (x2 - x1 + 1) * (y2 - y1 + 1) | |
| bbox2_area = (x4 - x3 + 1) * (y4 - y3 + 1) | |
| union_area = bbox1_area + bbox2_area - intersection_area | |
| iou = intersection_area / union_area | |
| return iou | |
| def save_tmp_img(visual_img): | |
| file_name = "".join([str(random.randint(0, 9)) for _ in range(5)]) + ".jpg" | |
| file_path = "/tmp/gradio" + file_name | |
| visual_img.save(file_path) | |
| return file_path | |
| def mask2bbox(mask): | |
| if mask is None: | |
| return '' | |
| mask = mask.resize([100, 100], resample=Image.NEAREST) | |
| mask = np.array(mask)[:, :, 0] | |
| rows = np.any(mask, axis=1) | |
| cols = np.any(mask, axis=0) | |
| if rows.sum(): | |
| # Get the top, bottom, left, and right boundaries | |
| rmin, rmax = np.where(rows)[0][[0, -1]] | |
| cmin, cmax = np.where(cols)[0][[0, -1]] | |
| bbox = '{{<{}><{}><{}><{}>}}'.format(cmin, rmin, cmax, rmax) | |
| else: | |
| bbox = '' | |
| return bbox | |
| def escape_markdown(text): | |
| # List of Markdown special characters that need to be escaped | |
| md_chars = ['<', '>'] | |
| # Escape each special character | |
| for char in md_chars: | |
| text = text.replace(char, '\\' + char) | |
| return text | |
| def reverse_escape(text): | |
| md_chars = ['\\<', '\\>'] | |
| for char in md_chars: | |
| text = text.replace(char, char[1:]) | |
| return text | |
| colors = [ | |
| (255, 0, 0), | |
| (0, 255, 0), | |
| (0, 0, 255), | |
| (210, 210, 0), | |
| (255, 0, 255), | |
| (0, 255, 255), | |
| (114, 128, 250), | |
| (0, 165, 255), | |
| (0, 128, 0), | |
| (144, 238, 144), | |
| (238, 238, 175), | |
| (255, 191, 0), | |
| (0, 128, 0), | |
| (226, 43, 138), | |
| (255, 0, 255), | |
| (0, 215, 255), | |
| ] | |
| color_map = { | |
| f"{color_id}": f"#{hex(color[2])[2:].zfill(2)}{hex(color[1])[2:].zfill(2)}{hex(color[0])[2:].zfill(2)}" for | |
| color_id, color in enumerate(colors) | |
| } | |
| used_colors = colors | |
| def visualize_all_bbox_together(image, generation): | |
| if image is None: | |
| return None, '' | |
| generation = html.unescape(generation) | |
| image_width, image_height = image.size | |
| image = image.resize([500, int(500 / image_width * image_height)]) | |
| image_width, image_height = image.size | |
| string_list = extract_substrings(generation) | |
| if string_list: # it is grounding or detection | |
| mode = 'all' | |
| entities = defaultdict(list) | |
| i = 0 | |
| j = 0 | |
| for string in string_list: | |
| try: | |
| obj, string = string.split('</p>') | |
| except ValueError: | |
| print('wrong string: ', string) | |
| continue | |
| bbox_list = string.split('<delim>') | |
| flag = False | |
| for bbox_string in bbox_list: | |
| integers = re.findall(r'-?\d+', bbox_string) | |
| if len(integers) == 4: | |
| x0, y0, x1, y1 = int(integers[0]), int(integers[1]), int(integers[2]), int(integers[3]) | |
| left = x0 / bounding_box_size * image_width | |
| bottom = y0 / bounding_box_size * image_height | |
| right = x1 / bounding_box_size * image_width | |
| top = y1 / bounding_box_size * image_height | |
| entities[obj].append([left, bottom, right, top]) | |
| j += 1 | |
| flag = True | |
| if flag: | |
| i += 1 | |
| else: | |
| integers = re.findall(r'-?\d+', generation) | |
| if len(integers) == 4: # it is refer | |
| mode = 'single' | |
| entities = list() | |
| x0, y0, x1, y1 = int(integers[0]), int(integers[1]), int(integers[2]), int(integers[3]) | |
| left = x0 / bounding_box_size * image_width | |
| bottom = y0 / bounding_box_size * image_height | |
| right = x1 / bounding_box_size * image_width | |
| top = y1 / bounding_box_size * image_height | |
| entities.append([left, bottom, right, top]) | |
| else: | |
| # don't detect any valid bbox to visualize | |
| return None, '' | |
| if len(entities) == 0: | |
| return None, '' | |
| if isinstance(image, Image.Image): | |
| image_h = image.height | |
| image_w = image.width | |
| image = np.array(image) | |
| elif isinstance(image, str): | |
| if os.path.exists(image): | |
| pil_img = Image.open(image).convert("RGB") | |
| image = np.array(pil_img)[:, :, [2, 1, 0]] | |
| image_h = pil_img.height | |
| image_w = pil_img.width | |
| else: | |
| raise ValueError(f"invaild image path, {image}") | |
| elif isinstance(image, torch.Tensor): | |
| image_tensor = image.cpu() | |
| reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None] | |
| reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None] | |
| image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean | |
| pil_img = T.ToPILImage()(image_tensor) | |
| image_h = pil_img.height | |
| image_w = pil_img.width | |
| image = np.array(pil_img)[:, :, [2, 1, 0]] | |
| else: | |
| raise ValueError(f"invaild image format, {type(image)} for {image}") | |
| indices = list(range(len(entities))) | |
| new_image = image.copy() | |
| previous_bboxes = [] | |
| # size of text | |
| text_size = 0.5 | |
| # thickness of text | |
| text_line = 1 # int(max(1 * min(image_h, image_w) / 512, 1)) | |
| box_line = 2 | |
| (c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line) | |
| base_height = int(text_height * 0.675) | |
| text_offset_original = text_height - base_height | |
| text_spaces = 2 | |
| # num_bboxes = sum(len(x[-1]) for x in entities) | |
| used_colors = colors # random.sample(colors, k=num_bboxes) | |
| color_id = -1 | |
| for entity_idx, entity_name in enumerate(entities): | |
| if mode == 'single' or mode == 'identify': | |
| bboxes = entity_name | |
| bboxes = [bboxes] | |
| else: | |
| bboxes = entities[entity_name] | |
| color_id += 1 | |
| for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm) in enumerate(bboxes): | |
| skip_flag = False | |
| orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm), int(y1_norm), int(x2_norm), int(y2_norm) | |
| color = used_colors[entity_idx % len(used_colors)] # tuple(np.random.randint(0, 255, size=3).tolist()) | |
| new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line) | |
| if mode == 'all': | |
| l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1 | |
| x1 = orig_x1 - l_o | |
| y1 = orig_y1 - l_o | |
| if y1 < text_height + text_offset_original + 2 * text_spaces: | |
| y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces | |
| x1 = orig_x1 + r_o | |
| # add text background | |
| (text_width, text_height), _ = cv2.getTextSize(f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size, | |
| text_line) | |
| text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - ( | |
| text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1 | |
| for prev_bbox in previous_bboxes: | |
| if computeIoU((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox['bbox']) > 0.95 and \ | |
| prev_bbox['phrase'] == entity_name: | |
| skip_flag = True | |
| break | |
| while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox['bbox']): | |
| text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces) | |
| text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces) | |
| y1 += (text_height + text_offset_original + 2 * text_spaces) | |
| if text_bg_y2 >= image_h: | |
| text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces)) | |
| text_bg_y2 = image_h | |
| y1 = image_h | |
| break | |
| if not skip_flag: | |
| alpha = 0.5 | |
| for i in range(text_bg_y1, text_bg_y2): | |
| for j in range(text_bg_x1, text_bg_x2): | |
| if i < image_h and j < image_w: | |
| if j < text_bg_x1 + 1.35 * c_width: | |
| # original color | |
| bg_color = color | |
| else: | |
| # white | |
| bg_color = [255, 255, 255] | |
| new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype( | |
| np.uint8) | |
| cv2.putText( | |
| new_image, f" {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces), | |
| cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA | |
| ) | |
| previous_bboxes.append( | |
| {'bbox': (text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), 'phrase': entity_name}) | |
| if mode == 'all': | |
| def color_iterator(colors): | |
| while True: | |
| for color in colors: | |
| yield color | |
| color_gen = color_iterator(colors) | |
| # Add colors to phrases and remove <p></p> | |
| def colored_phrases(match): | |
| phrase = match.group(1) | |
| color = next(color_gen) | |
| return f'<span style="color:rgb{color}">{phrase}</span>' | |
| generation = re.sub(r'{<\d+><\d+><\d+><\d+>}|<delim>', '', generation) | |
| generation_colored = re.sub(r'<p>(.*?)</p>', colored_phrases, generation) | |
| else: | |
| generation_colored = '' | |
| pil_image = Image.fromarray(new_image) | |
| return pil_image, generation_colored | |
| def gradio_reset(chat_state, img_list, path_list): | |
| if chat_state is not None: | |
| chat_state.messages = [] | |
| if img_list is not None: | |
| img_list = [] | |
| for path in path_list: | |
| os.remove(path) | |
| return None, gr.update(value=None, interactive=True), gr.update(placeholder='Upload your image and chat', | |
| interactive=True), chat_state, img_list | |
| def image_upload_trigger(upload_flag, replace_flag, img_list): | |
| # set the upload flag to true when receive a new image. | |
| # if there is an old image (and old conversation), set the replace flag to true to reset the conv later. | |
| upload_flag = 1 | |
| if img_list: | |
| replace_flag = 1 | |
| return upload_flag, replace_flag | |
| def example_trigger(text_input, image, upload_flag, replace_flag, img_list): | |
| # set the upload flag to true when receive a new image. | |
| # if there is an old image (and old conversation), set the replace flag to true to reset the conv later. | |
| upload_flag = 1 | |
| if img_list or replace_flag == 1: | |
| replace_flag = 1 | |
| return upload_flag, replace_flag | |
| def gradio_ask(user_message, chatbot, chat_state, gr_img, img_list, upload_flag, replace_flag): | |
| if len(user_message) == 0: | |
| text_box_show = 'Input should not be empty!' | |
| else: | |
| text_box_show = '' | |
| if isinstance(gr_img, dict): | |
| gr_img, mask = gr_img['image'], gr_img['mask'] | |
| else: | |
| mask = None | |
| if '[identify]' in user_message: | |
| # check if user provide bbox in the text input | |
| integers = re.findall(r'-?\d+', user_message) | |
| if len(integers) != 4: # no bbox in text | |
| bbox = mask2bbox(mask) | |
| user_message = user_message + bbox | |
| if chat_state is None: | |
| chat_state = CONV_VISION.copy() | |
| if upload_flag: | |
| if replace_flag: | |
| chat_state = CONV_VISION.copy() # new image, reset everything | |
| replace_flag = 0 | |
| chatbot = [] | |
| img_list = [] | |
| llm_message = chat.upload_img(gr_img, chat_state, img_list) | |
| upload_flag = 0 | |
| chat.ask(user_message, chat_state) | |
| chatbot = chatbot + [[user_message, None]] | |
| if '[identify]' in user_message: | |
| visual_img, _ = visualize_all_bbox_together(gr_img, user_message) | |
| if visual_img is not None: | |
| file_path = save_tmp_img(visual_img) | |
| chatbot = chatbot + [[(file_path,), None]] | |
| return text_box_show, chatbot, chat_state, img_list, upload_flag, replace_flag | |
| def gradio_answer(chatbot, chat_state, img_list, temperature): | |
| llm_message = chat.answer(conv=chat_state, | |
| img_list=img_list, | |
| temperature=temperature, | |
| max_new_tokens=500, | |
| max_length=2000)[0] | |
| chatbot[-1][1] = llm_message | |
| return chatbot, chat_state | |
| def gradio_stream_answer(chatbot, chat_state, img_list, temperature): | |
| if len(img_list) > 0: | |
| if not isinstance(img_list[0], torch.Tensor): | |
| chat.encode_img(img_list) | |
| streamer = chat.stream_answer(conv=chat_state, | |
| img_list=img_list, | |
| temperature=temperature, | |
| max_new_tokens=500, | |
| max_length=2000) | |
| output = '' | |
| for new_output in streamer: | |
| escapped = escape_markdown(new_output) | |
| output += escapped | |
| chatbot[-1][1] = output | |
| yield chatbot, chat_state | |
| print(output) | |
| chat_state.messages[-1][1] = '</s>' | |
| return chatbot, chat_state | |
| def gradio_visualize(chatbot, gr_img, path_list): | |
| if isinstance(gr_img, dict): | |
| gr_img, mask = gr_img['image'], gr_img['mask'] | |
| unescaped = reverse_escape(chatbot[-1][1]) | |
| visual_img, generation_color = visualize_all_bbox_together(gr_img, unescaped) | |
| if visual_img is not None: | |
| if len(generation_color): | |
| chatbot[-1][1] = generation_color | |
| file_path = save_tmp_img(visual_img) | |
| path_list.append(file_path) | |
| chatbot = chatbot + [[None, (file_path,)]] | |
| return chatbot | |
| def gradio_taskselect(idx): | |
| prompt_list = [ | |
| '', | |
| '[grounding] describe this image in detail', | |
| '[refer] ', | |
| '[detection] ', | |
| '[identify] what is this ', | |
| '[vqa] ' | |
| ] | |
| instruct_list = [ | |
| '**Hint:** Type in whatever you want', | |
| '**Hint:** Send the command to generate a grounded image description', | |
| '**Hint:** Type in a phrase about an object in the image and send the command', | |
| '**Hint:** Type in a caption or phrase, and see object locations in the image', | |
| '**Hint:** Draw a bounding box on the uploaded image then send the command. Click the "clear" botton on the top right of the image before redraw', | |
| '**Hint:** Send a question to get a short answer', | |
| ] | |
| return prompt_list[idx], instruct_list[idx] | |
| chat = Chat(model, vis_processor, device=device) | |
| title = """<h1 align="center">MiniGPT-v2 Demo</h1>""" | |
| description = 'Welcome to Our MiniGPT-v2 Chatbot Demo!' | |
| # article = """<p><a href='https://minigpt-v2.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a></p><p><a href='https://github.com/Vision-CAIR/MiniGPT-4/blob/main/MiniGPTv2.pdf'><img src='https://img.shields.io/badge/Paper-PDF-red'></a></p><p><a href='https://github.com/Vision-CAIR/MiniGPT-4'><img src='https://img.shields.io/badge/GitHub-Repo-blue'></a></p><p><a href='https://www.youtube.com/watch?v=atFCwV2hSY4'><img src='https://img.shields.io/badge/YouTube-Video-red'></a></p>""" | |
| article = """<p><a href='https://minigpt-v2.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a></p>""" | |
| introduction = ''' | |
| For Abilities Involving Visual Grounding: | |
| 1. Grounding: CLICK **Send** to generate a grounded image description. | |
| 2. Refer: Input a referring object and CLICK **Send**. | |
| 3. Detection: Write a caption or phrase, and CLICK **Send**. | |
| 4. Identify: Draw the bounding box on the uploaded image window and CLICK **Send** to generate the bounding box. (CLICK "clear" button before re-drawing next time). | |
| 5. VQA: Input a visual question and CLICK **Send**. | |
| 6. No Tag: Input whatever you want and CLICK **Send** without any tagging | |
| You can also simply chat in free form! | |
| ''' | |
| text_input = gr.Textbox(placeholder='Upload your image and chat', interactive=True, show_label=False, container=False, | |
| scale=8) | |
| with gr.Blocks() as demo: | |
| gr.Markdown(title) | |
| # gr.Markdown(description) | |
| gr.Markdown(article) | |
| with gr.Row(): | |
| with gr.Column(scale=0.5): | |
| image = gr.Image(type="pil", tool='sketch', brush_radius=20) | |
| temperature = gr.Slider( | |
| minimum=0.1, | |
| maximum=1.5, | |
| value=0.6, | |
| step=0.1, | |
| interactive=True, | |
| label="Temperature", | |
| ) | |
| clear = gr.Button("Restart") | |
| gr.Markdown(introduction) | |
| with gr.Column(): | |
| chat_state = gr.State(value=None) | |
| img_list = gr.State(value=[]) | |
| chatbot = gr.Chatbot(label='MiniGPT-v2') | |
| dataset = gr.Dataset( | |
| components=[gr.Textbox(visible=False)], | |
| samples=[['No Tag'], ['Grounding'], ['Refer'], ['Detection'], ['Identify'], ['VQA']], | |
| type="index", | |
| label='Task Shortcuts', | |
| ) | |
| task_inst = gr.Markdown('**Hint:** Upload your image and chat') | |
| with gr.Row(): | |
| text_input.render() | |
| send = gr.Button("Send", variant='primary', size='sm', scale=1) | |
| upload_flag = gr.State(value=0) | |
| replace_flag = gr.State(value=0) | |
| path_list = gr.State(value=0) | |
| image.upload(image_upload_trigger, [upload_flag, replace_flag, img_list], [upload_flag, replace_flag]) | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.Examples(examples=[ | |
| ["examples_v2/office.jpg", "[grounding] describe this image in detail", upload_flag, replace_flag, | |
| img_list], | |
| ["examples_v2/sofa.jpg", "[detection] sofas", upload_flag, replace_flag, img_list], | |
| ["examples_v2/2000x1372_wmkn_0012149409555.jpg", "[refer] the world cup", upload_flag, replace_flag, | |
| img_list], | |
| ["examples_v2/KFC-20-for-20-Nuggets.jpg", "[identify] what is this {<4><50><30><65>}", upload_flag, | |
| replace_flag, img_list], | |
| ], inputs=[image, text_input, upload_flag, replace_flag, img_list], fn=example_trigger, | |
| outputs=[upload_flag, replace_flag]) | |
| with gr.Column(): | |
| gr.Examples(examples=[ | |
| ["examples_v2/glip_test.jpg", "[vqa] where should I hide in this room when playing hide and seek", | |
| upload_flag, replace_flag, img_list], | |
| ["examples_v2/float.png", "Please write a poem about the image", upload_flag, replace_flag, img_list], | |
| ["examples_v2/thief.png", "Is the weapon fateful", upload_flag, replace_flag, img_list], | |
| ["examples_v2/cockdial.png", "What might happen in this image in the next second", upload_flag, | |
| replace_flag, img_list], | |
| ], inputs=[image, text_input, upload_flag, replace_flag, img_list], fn=example_trigger, | |
| outputs=[upload_flag, replace_flag]) | |
| dataset.click( | |
| gradio_taskselect, | |
| inputs=[dataset], | |
| outputs=[text_input, task_inst], | |
| show_progress="hidden", | |
| postprocess=False, | |
| queue=False, | |
| ) | |
| text_input.submit( | |
| gradio_ask, | |
| [text_input, chatbot, chat_state, image, img_list, upload_flag, replace_flag], | |
| [text_input, chatbot, chat_state, img_list, upload_flag, replace_flag], queue=False | |
| ).success( | |
| gradio_stream_answer, | |
| [chatbot, chat_state, img_list, temperature], | |
| [chatbot, chat_state] | |
| ).success( | |
| gradio_visualize, | |
| [chatbot, image, path_list], | |
| [chatbot, path_list], | |
| queue=False, | |
| ) | |
| send.click( | |
| gradio_ask, | |
| [text_input, chatbot, chat_state, image, img_list, upload_flag, replace_flag], | |
| [text_input, chatbot, chat_state, img_list, upload_flag, replace_flag] | |
| ).success( | |
| gradio_stream_answer, | |
| [chatbot, chat_state, img_list, temperature], | |
| [chatbot, chat_state] | |
| ).success( | |
| gradio_visualize, | |
| [chatbot, image, path_list], | |
| [chatbot, path_list], | |
| ) | |
| clear.click(gradio_reset, [chat_state, img_list, path_list], [chatbot, image, text_input, chat_state, img_list], queue=False) | |
| demo.launch(enable_queue=True) |