File size: 6,203 Bytes
411c845
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# 🎯 New Features Added to Active Reading Demo

## πŸ“‚ **Category Selection Feature**

### What It Does
Users can now manually select or override the document category detection:

**Available Categories:**
- **Auto-Detect** (default) - AI detects domain automatically
- **Finance** - Financial reports, earnings, budgets
- **Legal** - Contracts, agreements, policies  
- **Technical** - API docs, manuals, specifications
- **Medical** - Clinical trials, research, treatments
- **General** - Any other document type

### Category-Specific Extraction Patterns

#### πŸ“Š Finance Category
- **Revenue**: `$150 million revenue`, `sales of $2.5B`
- **Profit**: `profit margin 25%`, `net profit $50M`
- **Growth**: `15% growth`, `increased by 20%`
- **Dates**: `Q3 2024`, `fiscal year 2023`
- **Employees**: `hire 200 engineers`, `workforce of 5000`
- **Market Cap**: `market cap $10B`

#### βš–οΈ Legal Category  
- **Parties**: `between Company A and Company B`
- **Terms**: `term of 36 months`, `duration 3 years`
- **Liability**: `liability not to exceed $1M`
- **Termination**: `90 days written notice`
- **Governing Law**: `governed by laws of Delaware`
- **Effective Date**: `effective January 1, 2024`

#### πŸ”§ Technical Category
- **API Endpoints**: `GET /api/users`, `POST /auth/login`
- **Versions**: `version 2.1.0`, `v3.5`
- **Response Time**: `response time 150ms`
- **Rate Limits**: `1000 requests per minute`
- **Authentication**: `OAuth 2.0`, `JWT tokens`
- **Status Codes**: `HTTP 200`, `status code 404`

#### πŸ₯ Medical Category
- **Dosage**: `50mg daily`, `100ml twice daily`
- **Duration**: `treatment for 12 weeks`
- **Efficacy**: `85% efficacy rate`
- **Side Effects**: `side effects in 12% of patients`
- **Patient Count**: `500 patients enrolled`
- **P-Values**: `p<0.001`, `p=0.025`

## πŸ”‘ **Custom Keys Feature**

### What It Does
Users can specify their own extraction terms as comma-separated values:

**Example Inputs:**
```
CEO, budget, deadline, timeline
risk assessment, compliance, audit
performance, scalability, security
treatment, dosage, clinical trial
```

### How It Works
- **Smart Extraction**: Finds sentences containing the custom terms
- **Context Preservation**: Returns full sentences, not just keywords
- **Confidence Scoring**: Shows extraction confidence levels
- **JSON Output**: Structured data for easy integration

## 🎯 **New Strategy: Category-Specific Extraction**

### What's New
Added a specialized strategy that combines:
1. **Category-specific patterns** for targeted extraction
2. **Custom key extraction** for user-defined terms
3. **Structured output** with confidence scores
4. **Domain expertise** for each business category

### Example Output
```json
{
  "category": "Finance",
  "extracted_data": {
    "revenue": ["$150 million", "$2.5 billion sales"],
    "growth": ["15% increase", "20% growth rate"],
    "date": ["Q3 2024", "fiscal year 2023"]
  },
  "custom_extractions": {
    "CEO": ["CEO announced plans to expand", "CEO John Smith reported"],
    "investment": ["$50M investment in AI", "investment in new markets"]
  },
  "confidence_scores": {
    "revenue": 8.5,
    "custom_CEO": 6.2
  }
}
```

## 🎨 **Enhanced UI Elements**

### New Input Controls
- **πŸ“‚ Category Dropdown**: Manual category selection
- **πŸ”‘ Custom Keys Input**: Text field for custom extraction terms
- **πŸ“Š Enhanced Strategy Selection**: Added "Category-Specific Extraction"

### New Output Tabs
- **🎯 Category Analysis**: Dedicated tab for category-specific results
- **Enhanced JSON**: Structured category extraction data
- **Confidence Scores**: Shows extraction reliability

### Improved User Experience
- **Dynamic Help Text**: Context-aware guidance
- **Example Suggestions**: Sample custom keys for each category
- **Better Visual Organization**: Clearer result presentation

## πŸš€ **Usage Examples**

### Finance Document Analysis
```
Document Category: Finance
Custom Keys: CEO, quarterly results, investment
Strategy: Category-Specific Extraction
```

**Result**: Extracts revenue figures, profit margins, growth rates PLUS CEO mentions, quarterly data, and investment information.

### Legal Contract Review
```
Document Category: Legal  
Custom Keys: liability, termination, governing law
Strategy: Category-Specific Extraction
```

**Result**: Finds contract parties, terms, dates PLUS specific liability clauses, termination conditions, and jurisdiction details.

### Technical Documentation
```
Document Category: Technical
Custom Keys: security, performance, scalability  
Strategy: Category-Specific Extraction
```

**Result**: Extracts API endpoints, versions, rate limits PLUS security features, performance metrics, and scalability considerations.

## 🎯 **Why This Makes Active Reading Better**

### 1. **Adaptive Intelligence**
- AI now adapts not just to document type, but to user-specific needs
- Combines automated domain detection with custom requirements

### 2. **Enterprise Flexibility**  
- Users can extract exactly what they need for their business case
- Supports diverse enterprise document analysis workflows

### 3. **Structured Output**
- Category-specific patterns ensure consistent extraction
- Custom keys add user-defined flexibility
- JSON format enables easy integration

### 4. **Demonstrable Value**
- Shows how Active Reading adapts to different business domains
- Proves the framework can handle real enterprise requirements
- Highlights the superiority over one-size-fits-all approaches

## 🎨 **Implementation Impact**

### What Changed in Code
- **Added**: `extract_category_specific_info()` method
- **Enhanced**: `process_document()` function with category/custom key parameters  
- **New**: Category-specific regex patterns for each domain
- **Improved**: UI with additional input controls and output tabs

### Backward Compatibility
- βœ… All existing strategies still work
- βœ… Auto-detection remains the default
- βœ… Original demo functionality preserved
- βœ… Enhanced with new capabilities

This makes your Active Reading demo much more interactive and showcases the adaptive intelligence that makes it superior to traditional document processing approaches! πŸš€