Visal9252 commited on
Commit
663a772
·
verified ·
1 Parent(s): 7a705d8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -2
README.md CHANGED
@@ -1,7 +1,7 @@
1
  ---
2
  title: AI Content Generator
3
  emoji: 👀
4
- colorFrom: yellow
5
  colorTo: indigo
6
  sdk: streamlit
7
  sdk_version: 1.36.0
@@ -10,4 +10,71 @@ pinned: false
10
  license: apache-2.0
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  title: AI Content Generator
3
  emoji: 👀
4
+ colorFrom: blue
5
  colorTo: indigo
6
  sdk: streamlit
7
  sdk_version: 1.36.0
 
10
  license: apache-2.0
11
  ---
12
 
13
+ # AI Content Generator
14
+
15
+
16
+ This project is an AI-powered content generation tool that leverages Hugging Face's models to create customized content based on user queries. The application is built using Streamlit and LangChain, providing an interactive UI for generating content tailored to different age groups and task types.
17
+
18
+ ## Live Application
19
+
20
+ You can access the live application [here👉](https://huggingface.co/spaces/Visal9252/AI_Content_Generator).
21
+
22
+ ## GitHub Repository
23
+
24
+ The source code for this project is available on GitHub: [AI-Content-Generator-Langchain-LLMS-Huggingface](https://github.com/vishal815/AI-Content-Generator-Langchain-LLMS-Huggingface).
25
+
26
+ ## Features
27
+
28
+ - **Responsive UI**: The app features a visually appealing and responsive user interface.
29
+ - **Age-Specific Content**: Generate content tailored to Kids, Adults, or Senior Citizens.
30
+ - **Task-Specific Content**: Choose from various tasks like writing a sales copy, creating a tweet, writing a product description, or explaining a concept.
31
+ - **Customizable Word Limit**: Set the desired word limit for the generated content.
32
+
33
+ ## Technologies Used
34
+
35
+ - **Streamlit**: For building the web application.
36
+ - **LangChain**: For creating the language model interface.
37
+ - **LLMs (Large Language Models)**: To process and generate human-like text.
38
+ - **Hugging Face**: For utilizing advanced AI models.
39
+
40
+ ## How to Use
41
+
42
+ 1. **Clone the Repository**:
43
+ ```bash
44
+ git clone https://github.com/vishal815/AI-Content-Generator-Langchain-LLMS-Huggingface.git
45
+ cd AI-Content-Generator-Langchain-LLMS-Huggingface
46
+ ```
47
+
48
+ 2. **Install Dependencies**:
49
+ ```bash
50
+ pip install -r requirements.txt
51
+ ```
52
+
53
+ 3. **Set Up Environment Variables**:
54
+ - Create a `.env` file in the project directory.
55
+ - Add your Hugging Face API token to the `.env` file:
56
+ ```
57
+ HUGGINGFACEHUB_API_TOKEN=your_hugging_face_api_token_here
58
+ ```
59
+ Replace `your_hugging_face_api_token_here` with your actual Hugging Face API token.
60
+
61
+ 4. **Run the Application**:
62
+ ```bash
63
+ streamlit run app.py
64
+ ```
65
+
66
+ 5. **Use the Application**:
67
+ - Open your web browser and navigate to `http://localhost:8501`.
68
+ - Enter your query in the text area.
69
+ - Select the task you want to perform from the dropdown menu.
70
+ - Select the target age group from the dropdown menu.
71
+ - Adjust the word limit using the slider.
72
+ - Click the "Generate Content" button to receive your customized content.
73
+
74
+ ## Project Structure
75
+
76
+ - `app.py`: The main application file.
77
+ - `.env`: Environment variable file containing the Hugging Face API token.
78
+ - `requirements.txt`: List of dependencies required for the project.
79
+
80
+ ## Vishal Lazrus