""" lstm_cnn_app.py Gradio app to serve the CNN-LSTM fault classification model. Usage: - Place a local model file named by LOCAL_MODEL_FILE in the same repo, or - Set HUB_REPO and HUB_FILENAME to a public Hugging Face model repo + filename, and the app will download it at startup using hf_hub_download. """ import os import numpy as np import pandas as pd import gradio as gr from tensorflow.keras.models import load_model from huggingface_hub import hf_hub_download # CONFIG: change these if your model filename/repo are different LOCAL_MODEL_FILE = "lstm_cnn_model.h5" HUB_REPO = "" # e.g., "username/lstm-cnn-model" HUB_FILENAME = "" # e.g., "lstm_cnn_model.h5" def get_model_path(): if os.path.exists(LOCAL_MODEL_FILE): return LOCAL_MODEL_FILE if HUB_REPO and HUB_FILENAME: try: print(f"Downloading {HUB_FILENAME} from {HUB_REPO} ...") return hf_hub_download(repo_id=HUB_REPO, filename=HUB_FILENAME) except Exception as e: print("Failed to download from hub:", e) return None MODEL_PATH = get_model_path() MODEL = None if MODEL_PATH: try: MODEL = load_model(MODEL_PATH) print("Loaded model:", MODEL_PATH) except Exception as e: print("Failed to load model:", e) MODEL = None else: print("No model found. Please upload a model named", LOCAL_MODEL_FILE, "or set HUB_REPO/HUB_FILENAME.") def prepare_input_array(arr, n_timesteps=1, n_features=None): arr = np.array(arr) if arr.ndim == 1: if n_features is None: return arr.reshape(1, n_timesteps, -1) return arr.reshape(1, n_timesteps, n_features) elif arr.ndim == 2: return arr else: return arr def predict_text(text, n_timesteps=1, n_features=None): if MODEL is None: return "模型未加载,请上传或配置模型。" arr = np.fromstring(text, sep=',') x = prepare_input_array(arr, n_timesteps=int(n_timesteps), n_features=(int(n_features) if n_features else None)) probs = MODEL.predict(x) label = int(np.argmax(probs, axis=1)[0]) return f"预测类别: {label} (概率: {float(np.max(probs)):.4f})" def predict_csv(file, n_timesteps=1, n_features=None): if MODEL is None: return {"error": "模型未加载,请上传或配置模型。"} df = pd.read_csv(file.name) X = df.values if n_features: X = X.reshape(X.shape[0], int(n_timesteps), int(n_features)) preds = MODEL.predict(X) labels = preds.argmax(axis=1).tolist() return {"labels": labels, "probs": preds.tolist()} with gr.Blocks() as demo: gr.Markdown("# CNN-LSTM Fault Classification") gr.Markdown("上传 CSV(每行一个样本)或粘贴逗号分隔的一行特征进行预测。") with gr.Row(): file_in = gr.File(label="上传 CSV(每行 = 一个样本)") text_in = gr.Textbox(lines=2, placeholder="粘贴逗号分隔的一行特征,例如: 0.1,0.2,0.3,...") n_ts = gr.Number(value=1, label="timesteps (整型)") n_feat = gr.Number(value=None, label="features (可选,留空尝试自动推断)") btn = gr.Button("预测") out_text = gr.Textbox(label="单样本预测输出") out_json = gr.JSON(label="批量预测结果 (labels & probs)") def run_predict(file, text, n_timesteps, n_features): if file is not None: return "CSV 预测完成", predict_csv(file, n_timesteps, n_features) if text: return predict_text(text, n_timesteps, n_features), {} return "请提供 CSV 或特征文本", {} btn.click(run_predict, inputs=[file_in, text_in, n_ts, n_feat], outputs=[out_text, out_json]) if __name__ == '__main__': demo.launch(server_name='0.0.0.0', server_port=7861)